Driver routine for finding the weighted explicit or implicit orthogonal distance regression (ODR) or ordinary linear or nonlinear least squares (OLS) solution.
Type | Intent | Optional | Attributes | Name | ||
---|---|---|---|---|---|---|
procedure(fcn_t) | :: | fcn |
User-supplied subroutine for evaluating the model. |
|||
integer, | intent(in) | :: | n |
Number of observations. |
||
integer, | intent(in) | :: | m |
Number of columns of data in the independent variable. |
||
integer, | intent(in) | :: | np |
Number of function parameters. |
||
integer, | intent(in) | :: | nq |
Number of responses per observation. |
||
real(kind=wp), | intent(inout) | :: | beta(:) |
Function parameters. |
||
real(kind=wp), | intent(in) | :: | y(:,:) |
Dependent variable. |
||
real(kind=wp), | intent(in) | :: | x(:,:) |
Explanatory variable. |
||
real(kind=wp), | intent(inout), | optional | :: | delta(:,:) |
Error in the |
|
real(kind=wp), | intent(in), | optional | :: | we(:,:,:) |
|
|
real(kind=wp), | intent(in), | optional | :: | wd(:,:,:) |
|
|
integer, | intent(in), | optional | :: | ifixb(:) |
Values designating whether the elements of |
|
integer, | intent(in), | optional | :: | ifixx(:,:) |
Values designating whether the elements of |
|
integer, | intent(in), | optional | :: | job |
Variable controlling problem initialization and computational method. |
|
integer, | intent(in), | optional | :: | ndigit |
Number of accurate digits in the function results, as supplied by the user. |
|
real(kind=wp), | intent(in), | optional | :: | taufac |
Factor used to compute the initial trust region diameter. |
|
real(kind=wp), | intent(in), | optional | :: | sstol |
Sum-of-squares convergence stopping tolerance. |
|
real(kind=wp), | intent(in), | optional | :: | partol |
Parameter convergence stopping tolerance. |
|
integer, | intent(in), | optional | :: | maxit |
Maximum number of iterations allowed. |
|
integer, | intent(in), | optional | :: | iprint |
Print control variable. |
|
integer, | intent(in), | optional | :: | lunerr |
Logical unit number for error messages. Available options are:
0 => no output.
6 => output to standard error (default).
other => output to logical unit number |
|
integer, | intent(in), | optional | :: | lunrpt |
Logical unit number for computation reports. Available options are:
0 => no output.
6 => output to standard error (default).
other => output to logical unit number |
|
real(kind=wp), | intent(in), | optional | :: | stpb(:) |
Relative step for computing finite difference derivatives with respect to |
|
real(kind=wp), | intent(in), | optional | :: | stpd(:,:) |
Relative step for computing finite difference derivatives with respect to |
|
real(kind=wp), | intent(in), | optional | :: | sclb(:) |
Scaling values for |
|
real(kind=wp), | intent(in), | optional | :: | scld(:,:) |
Scaling values for |
|
real(kind=wp), | intent(inout), | optional, | target | :: | work(:) |
Real work space. |
integer, | intent(inout), | optional, | target | :: | iwork(:) |
Integer work space. |
integer, | intent(out), | optional | :: | info |
Variable designating why the computations were stopped. |
|
real(kind=wp), | intent(in), | optional | :: | lower(:) |
Lower bound on |
|
real(kind=wp), | intent(in), | optional | :: | upper(:) |
Upper bound on |
Type | Visibility | Attributes | Name | Initial | |||
---|---|---|---|---|---|---|---|
integer, | public | :: | ldwe | ||||
integer, | public | :: | ld2we | ||||
integer, | public | :: | ldwd | ||||
integer, | public | :: | ld2wd | ||||
integer, | public | :: | ldifx | ||||
integer, | public | :: | ldscld | ||||
integer, | public | :: | ldstpd | ||||
integer, | public | :: | job_ | ||||
integer, | public | :: | ndigit_ | ||||
integer, | public | :: | maxit_ | ||||
integer, | public | :: | iprint_ | ||||
integer, | public | :: | lunerr_ | ||||
integer, | public | :: | lunrpt_ | ||||
integer, | public | :: | info_ | ||||
integer, | public | :: | lwork | ||||
integer, | public | :: | liwork | ||||
integer, | public | :: | info1_ | ||||
integer, | public | :: | info2_ | ||||
integer, | public | :: | info3_ | ||||
integer, | public | :: | info4_ | ||||
integer, | public | :: | info5_ | ||||
integer, | public | :: | ifixb_(np) | ||||
integer, | public | :: | ifixx_(n,m) | ||||
real(kind=wp), | public | :: | taufac_ | ||||
real(kind=wp), | public | :: | sstol_ | ||||
real(kind=wp), | public | :: | partol_ | ||||
real(kind=wp), | public | :: | lower_(np) | ||||
real(kind=wp), | public | :: | we_(n,nq,nq) | ||||
real(kind=wp), | public | :: | wd_(n,m,m) | ||||
real(kind=wp), | public | :: | stpb_(np) | ||||
real(kind=wp), | public | :: | stpd_(n,m) | ||||
real(kind=wp), | public | :: | sclb_(np) | ||||
real(kind=wp), | public | :: | scld_(n,m) | ||||
real(kind=wp), | public | :: | upper_(np) | ||||
real(kind=wp), | public | :: | wd1(1,1,1) | ||||
real(kind=wp), | public, | allocatable | :: | tempret(:,:) | |||
real(kind=wp), | public, | allocatable, target | :: | work_local(:) | |||
real(kind=wp), | public, | pointer | :: | work_(:) | |||
integer, | public, | allocatable, target | :: | iwork_local(:) | |||
integer, | public, | pointer | :: | iwork_(:) | |||
logical, | public | :: | head | ||||
logical, | public | :: | isodr | ||||
logical, | public | :: | restart |
impure subroutine odr & (fcn, & n, m, np, nq, & beta, & y, x, & delta, & we, wd, & ifixb, ifixx, & job, ndigit, taufac, & sstol, partol, maxit, & iprint, lunerr, lunrpt, & stpb, stpd, & sclb, scld, & work, iwork, & info, & lower, upper) !! Driver routine for finding the weighted explicit or implicit orthogonal distance !! regression (ODR) or ordinary linear or nonlinear least squares (OLS) solution. ! Date Written: 860529 (YYMMDD) ! Revision Date: 20040301 (YYYYMMDD) ! Category No.: G2E,I1B1 ! Keywords: Orthogonal distance regression, ! Nonlinear least squares, ! Measurement error models, ! Errors in variables ! Authors: ! Boggs, Paul T. ! Applied and Computational Mathematics Division ! National Institute of Standards and Technology ! Gaithersburg, MD 20899 ! Byrd, Richard H. ! Department of Computer Science ! University of Colorado, Boulder, CO 80309 ! Rogers, Janet E. ! Applied and Computational Mathematics Division ! National Institute of Standards and Technology ! Boulder, CO 80303-3328 ! Schnabel, Robert B. ! Department of Computer Science ! University of Colorado, Boulder, CO 80309 ! and ! Applied and Computational Mathematics Division ! National Institute of Standards and Technology ! Boulder, CO 80303-3328 ! Purpose: REAL(wp) driver routine for finding the weighted explicit or implicit ! orthogonal distance regression (ODR) or ordinary linear or nonlinear least squares (OLS) ! solution (long call statement) ! Description: ! For details, see ODRPACK95 User's Reference Guide. ! References: ! Boggs, P. T., R. H. Byrd, J. R. Donaldson, and R. B. Schnabel (1989), ! "Algorithm 676 --- ODRPACK: Software for Weighted Orthogonal Distance Regression," ! ACM Trans. Math. Software., 15(4):348-364. ! Boggs, P. T., R. H. Byrd, J. E. Rogers, and ! R. B. Schnabel (1992), ! "User's Reference Guide for ODRPACK Version 2.01, ! Software for Weighted Orthogonal Distance Regression," ! National Institute of Standards and Technology ! Internal Report Number 92-4834. ! Boggs, P. T., R. H. Byrd, and R. B. Schnabel (1987), ! "A Stable and Efficient Algorithm for Nonlinear Orthogonal Distance Regression," ! SIAM J. Sci. Stat. Comput., 8(6):1052-1078. use odrpack_kinds, only: negone, zero use odrpack_core, only: fcn_t use odrpack_reports, only: dodphd, dodpe1 procedure(fcn_t) :: fcn !! User-supplied subroutine for evaluating the model. integer, intent(in) :: n !! Number of observations. integer, intent(in) :: m !! Number of columns of data in the independent variable. integer, intent(in) :: np !! Number of function parameters. integer, intent(in) :: nq !! Number of responses per observation. real(wp), intent(inout) :: beta(:) !! Function parameters. `Shape: (np)`. real(wp), intent(in) :: y(:, :) !! Dependent variable. `Shape: (n, nq)`. Unused when the model is implicit. real(wp), intent(in) :: x(:, :) !! Explanatory variable. `Shape: (n, m)`. real(wp), intent(inout), optional :: delta(:, :) !! Error in the `x` data. `Shape: (n, m)`. Initial guess on input and estimated value !! on output. real(wp), intent(in), optional :: we(:, :, :) !! `epsilon` weights. `Shape: ({1,n}, {1,nq}, nq)`. See p. 25. real(wp), intent(in), optional :: wd(:, :, :) !! `delta` weights. `Shape: ({1,n}, {1,m}, m)`. See p. 26. integer, intent(in), optional :: ifixb(:) !! Values designating whether the elements of `beta` are fixed at their input values !! or not. `Shape: (np)`. integer, intent(in), optional :: ifixx(:, :) !! Values designating whether the elements of `x` are fixed at their input values !! or not. `Shape: ({1,n}, m)`. See p. 27. integer, intent(in), optional :: job !! Variable controlling problem initialization and computational method. integer, intent(in), optional :: ndigit !! Number of accurate digits in the function results, as supplied by the user. real(wp), intent(in), optional :: taufac !! Factor used to compute the initial trust region diameter. real(wp), intent(in), optional :: sstol !! Sum-of-squares convergence stopping tolerance. real(wp), intent(in), optional :: partol !! Parameter convergence stopping tolerance. integer, intent(in), optional :: maxit !! Maximum number of iterations allowed. integer, intent(in), optional :: iprint !! Print control variable. integer, intent(in), optional :: lunerr !! Logical unit number for error messages. Available options are: !! 0 => no output. !! 6 => output to standard error (default). !! other => output to logical unit number `lunerr`. integer, intent(in), optional :: lunrpt !! Logical unit number for computation reports. Available options are: !! 0 => no output. !! 6 => output to standard error (default). !! other => output to logical unit number `lunrpt`. real(wp), intent(in), optional :: stpb(:) !! Relative step for computing finite difference derivatives with respect to `beta`. !! `Shape: (np)`. real(wp), intent(in), optional :: stpd(:, :) !! Relative step for computing finite difference derivatives with respect to `delta`. !! `Shape: ({1,n}, m)`. See p. 31. real(wp), intent(in), optional :: sclb(:) !! Scaling values for `beta`. `Shape: (np)`. real(wp), intent(in), optional :: scld(:, :) !! Scaling values for `delta`. `Shape: ({1,n}, m)`. See p. 32. real(wp), intent(inout), optional, target :: work(:) !! Real work space. integer, intent(inout), optional, target :: iwork(:) !! Integer work space. integer, intent(out), optional :: info !! Variable designating why the computations were stopped. real(wp), intent(in), optional :: lower(:) !! Lower bound on `beta`. `Shape: (np)`. real(wp), intent(in), optional :: upper(:) !! Upper bound on `beta`. `Shape: (np)`. ! Local variables integer :: ldwe, ld2we, ldwd, ld2wd, ldifx, ldscld, ldstpd, job_, ndigit_, maxit_, & iprint_, lunerr_, lunrpt_, info_, lwork, liwork, info1_, info2_, info3_, & info4_, info5_ integer :: ifixb_(np), ifixx_(n, m) real(wp) :: taufac_, sstol_, partol_ real(wp) :: lower_(np), we_(n, nq, nq), wd_(n, m, m), stpb_(np), stpd_(n, m), & sclb_(np), scld_(n, m), upper_(np), wd1(1, 1, 1) real(wp), allocatable :: tempret(:, :) real(wp), allocatable, target :: work_local(:) real(wp), pointer :: work_(:) integer, allocatable, target :: iwork_local(:) integer, pointer :: iwork_(:) logical :: head, isodr, restart ! Set LINFO to zero indicating no errors have been found thus far info_ = 0 info1_ = 0 info2_ = 0 info3_ = 0 info4_ = 0 info5_ = 0 ! Set all scalar variable defaults except JOB ldwe = 1 ld2we = 1 ldwd = 1 ld2wd = 1 ldifx = 1 ldscld = 1 ldstpd = 1 iprint_ = -1 lunerr_ = 6 lunrpt_ = 6 maxit_ = -1 ndigit_ = -1 partol_ = negone sstol_ = negone taufac_ = negone head = .true. ! Check for the option arguments for printing (so error messages can be ! printed appropriately from here on out if (present(iprint)) then iprint_ = iprint end if if (present(lunrpt)) then lunrpt_ = lunrpt end if if (lunrpt_ == 6) then lunrpt_ = output_unit end if if (present(lunerr)) then lunerr_ = lunerr end if if (lunerr_ == 6) then lunerr_ = error_unit end if ! Ensure the problem size is valid if (n <= 0) then info5_ = 1 info4_ = 1 end if if (m <= 0) then info5_ = 1 info3_ = 1 end if if (np <= 0) then info5_ = 1 info2_ = 1 end if if (nq <= 0) then info5_ = 1 info1_ = 1 end if if (info5_ /= 0) then info_ = 10000*info5_ + 1000*info4_ + 100*info3_ + 10*info2_ + info1_ if (lunerr_ /= 0 .and. iprint_ /= 0) then call dodphd(head, lunrpt_) call dodpe1( & lunerr_, info_, info5_, info4_, info3_, info2_, info1_, & n, m, nq, & ldscld, ldstpd, ldwe, ld2we, ldwd, ld2wd, & lwork, liwork) end if if (present(info)) then info = info_ end if return end if ! Define LJOB and check that necessary arguments are passed for JOB if (present(job)) then job_ = job if (mod(job, 10000)/1000 >= 1) then if (.not. present(delta)) then info5_ = 7 info4_ = 1 end if end if if (job >= 10000) then if (.not. present(iwork)) then info5_ = 7 info2_ = 1 end if if (.not. present(work)) then info5_ = 7 info3_ = 1 end if end if else job_ = -1 end if if (info5_ /= 0) then info_ = 10000*info5_ + 1000*info4_ + 100*info3_ + 10*info2_ + info1_ if (lunerr_ /= 0 .and. iprint_ /= 0) then call dodphd(head, lunrpt_) call dodpe1( & lunerr_, info_, info5_, info4_, info3_, info2_, info1_, & n, m, nq, & ldscld, ldstpd, ldwe, ld2we, ldwd, ld2wd, & lwork, liwork) end if if (present(info)) then info = info_ end if return end if ! Determine the size of the work arrays isodr = (job_ < 0 .or. mod(job_, 10) <= 1) call workspace_dimensions(n, m, np, nq, isodr, lwork, liwork) ! Allocate the local work arrays, if not provided by user ! The complementary case is treated below, because of the way the info flags are designed if (.not. present(iwork)) then allocate (iwork_local(liwork), stat=info2_) iwork_ => iwork_local end if if (.not. present(work)) then allocate (work_local(lwork), stat=info3_) work_ => work_local end if allocate (tempret(max(n, np), max(nq, m)), stat=info4_) if (info4_ /= 0 .or. info3_ /= 0 .or. info2_ /= 0) then info5_ = 8 end if if (info5_ /= 0) then info_ = 10000*mod(info5_, 10) + 1000*mod(info4_, 10) + & 100*mod(info3_, 10) + 10*mod(info2_, 10) + mod(info1_, 10) if (lunerr_ /= 0 .and. iprint_ /= 0) then call dodphd(head, lunrpt_) call dodpe1( & lunerr_, info_, info5_, info4_, info3_, info2_, info1_, & n, m, nq, & ldscld, ldstpd, ldwe, ld2we, ldwd, ld2wd, & lwork, liwork) end if if (present(info)) then info = info_ end if return end if ! Set internal array variable defaults except IWORK and WORK ifixb_(1) = -1 ifixx_(1, 1) = -1 lower_(1:np) = -huge(zero) sclb_(1) = negone scld_(1, 1) = negone stpb_(1) = negone stpd_(1, 1) = negone upper_(1:np) = huge(zero) we_(1, 1, 1) = negone wd_(1, 1, 1) = negone ! Check the size of required arguments and return errors if they are too small if (size(beta) < np) then info1_ = info1_ + 1 end if if (any(size(y) < [n, nq])) then info1_ = info1_ + 2 end if if (any(size(x) < [n, m])) then info1_ = info1_ + 4 end if ! Check the presence of optional arguments and copy their values internally or ! report errors as necessary if (present(ifixb)) then if (size(ifixb) < np) then info1_ = info1_ + 64 end if if (ifixb(1) < 0) then ifixb_(1) = ifixb(1) else ifixb_(1:np) = ifixb(1:np) end if end if if (present(ifixx)) then ldifx = size(ifixx, 1) if (any(size(ifixx) <= [0, 0])) then info1_ = info1_ + 128 end if if (.not. (ifixx(1, 1) < 0 .or. ldifx == 1 .or. ldifx >= n) & .or. size(ifixx, 2) < m) then info1_ = info1_ + 128 end if if (ldifx > n) then ldifx = n end if if (ifixx(1, 1) < 0) then ifixx_(1, 1) = ifixx(1, 1) else ifixx_(1:ldifx, 1:m) = ifixx(1:ldifx, 1:m) end if end if if (present(iwork)) then if (size(iwork) >= liwork) then iwork_ => iwork(1:liwork) else info1_ = info1_ + 8192 end if end if if (present(maxit)) then maxit_ = maxit end if if (present(ndigit)) then ndigit_ = ndigit end if if (present(partol)) then partol_ = partol end if if (present(sclb)) then if (size(sclb) < np) then info1_ = info1_ + 1024 end if if (sclb(1) <= zero) then sclb_(1) = sclb(1) else sclb_(1:np) = sclb(1:np) end if end if if (present(scld)) then ldscld = size(scld, 1) if (any(size(scld) <= [0, 0])) then info1_ = info1_ + 2048 end if if (.not. (scld(1, 1) <= zero .or. ldscld == 1 .or. ldscld >= n) & .or. size(scld, 2) < m) then info1_ = info1_ + 2048 end if if (ldscld > n) then ldscld = n end if if (scld(1, 1) <= zero) then scld_(1, 1) = scld(1, 1) else scld_(1:ldscld, 1:m) = scld(1:ldscld, 1:m) end if end if if (present(sstol)) then sstol_ = sstol end if if (present(stpb)) then if (size(stpb) < np) then info1_ = info1_ + 256 end if if (stpb(1) <= zero) then stpb_(1) = stpb(1) else stpb_(1:np) = stpb(1:np) end if end if if (present(stpd)) then ldstpd = size(stpd, 1) if (any(size(stpd) <= [0, 0])) then info1_ = info1_ + 512 end if if (.not. (stpd(1, 1) <= zero .or. ldstpd == 1 .or. ldstpd >= n) & .or. size(stpd, 2) < m) then info1_ = info1_ + 512 end if if (ldstpd > n) then ldstpd = n end if if (stpd(1, 1) <= zero) then stpd_(1, 1) = stpd(1, 1) else stpd_(1:ldstpd, 1:m) = stpd(1:ldstpd, 1:m) end if end if if (present(taufac)) then taufac_ = taufac end if if (present(we)) then ldwe = size(we, 1) ld2we = size(we, 2) if (any(size(we) <= [0, 0, 0])) then info1_ = info1_ + 16 end if if (.not. (we(1, 1, 1) < zero .or. & ((ldwe == 1 .or. ldwe >= n) .and. & (ld2we == 1 .or. ld2we >= nq))) .or. size(we, 3) < nq) then info1_ = info1_ + 16 end if if (ldwe > n) then ldwe = n end if if (ld2we > nq) then ld2we = nq end if if (we(1, 1, 1) < zero) then we_(1, 1, 1) = we(1, 1, 1) else we_(1:ldwe, 1:ld2we, 1:nq) = we(1:ldwe, 1:ld2we, 1:nq) end if end if if (present(wd)) then ldwd = size(wd, 1) ld2wd = size(wd, 2) if (any(size(wd) <= [0, 0, 0])) then info1_ = info1_ + 32 end if if (.not. (wd(1, 1, 1) < zero .or. & ((ldwd == 1 .or. ldwd >= n) .and. & (ld2wd == 1 .or. ld2wd >= m))) .or. size(wd, 3) < m) then info1_ = info1_ + 32 end if if (ldwd > n) then ldwd = n end if if (ld2wd > m) then ld2wd = m end if if (wd(1, 1, 1) <= zero) then wd_(1, 1, 1) = wd(1, 1, 1) else wd_(1:ldwd, 1:ld2wd, 1:m) = wd(1:ldwd, 1:ld2wd, 1:m) end if end if if (present(work)) then if (size(work) >= lwork) then work_ => work(1:lwork) else info1_ = info1_ + 4096 end if end if restart = (mod(job_/10000, 10) >= 1) if (.not. restart) then work_ = zero iwork_ = 0 end if if (present(delta) .and. (.not. restart)) then if (any(shape(delta) < [n, m])) then info1_ = info1_ + 8 end if work_(1:n*m) = reshape(delta(1:n, 1:m), [n*m]) end if if (present(lower)) then if (size(lower) < np) then info1_ = info1_ + 32768 end if lower_(1:np) = lower(1:np) end if if (present(upper)) then if (size(upper) < np) then info1_ = info1_ + 16384 end if upper_(1:np) = upper(1:np) end if ! Report an error if any of the array sizes didn't match. if (info1_ /= 0) then info_ = 100000 + info1_ info1_ = 0 if (lunerr_ /= 0 .and. iprint_ /= 0) then call dodphd(head, lunrpt_) call dodpe1( & lunerr_, info_, info5_, info4_, info3_, info2_, info1_, & n, m, nq, & ldscld, ldstpd, ldwe, ld2we, ldwd, ld2wd, & lwork, liwork) end if if (present(info)) then info = info_ end if return end if if (wd_(1, 1, 1) /= 0) then call dodcnt & (fcn, & n, m, np, nq, & beta(1:np), & y(1:n, 1:nq), n, x(1:n, 1:m), n, & we_(1:ldwe, 1:ld2we, 1:nq), ldwe, ld2we, & wd_(1:ldwd, 1:ld2wd, 1:m), ldwd, ld2wd, & ifixb_, ifixx_(1:ldifx, 1:m), ldifx, & job_, ndigit_, taufac_, & sstol_, partol_, maxit_, & iprint_, lunerr_, lunrpt_, & stpb_, stpd_(1:ldstpd, 1:m), ldstpd, & sclb_, scld_(1:ldscld, 1:m), ldscld, & work_, lwork, tempret, iwork_, liwork, & info_, & lower_, upper_) else wd1(1, 1, 1) = negone call dodcnt & (fcn, & n, m, np, nq, & beta(1:np), & y(1:n, 1:nq), n, x(1:n, 1:m), n, & we_(1:ldwe, 1:ld2we, 1:nq), ldwe, ld2we, & wd1, 1, 1, & ifixb_, ifixx_(1:ldifx, 1:m), ldifx, & job_, ndigit_, taufac_, & sstol_, partol_, maxit_, & iprint_, lunerr_, lunrpt_, & stpb_, stpd_(1:ldstpd, 1:m), ldstpd, & sclb_, scld_(1:ldscld, 1:m), ldscld, & work_, lwork, tempret, iwork_, liwork, & info_, & lower_, upper_) end if if (present(delta)) then delta(1:n, 1:m) = reshape(work_(1:n*m), [n, m]) end if if (present(info)) then info = info_ end if end subroutine odr