module odrpack !! Main driver routines for finding the weighted explicit or implicit orthogonal distance !! regression (ODR) or ordinary linear or nonlinear least squares (OLS) solution. use odrpack_kinds, only: wp use, intrinsic :: iso_fortran_env, only: error_unit, output_unit implicit none contains impure subroutine odr & (fcn, & n, m, np, nq, & beta, & y, x, & delta, & we, wd, & ifixb, ifixx, & job, ndigit, taufac, & sstol, partol, maxit, & iprint, lunerr, lunrpt, & stpb, stpd, & sclb, scld, & work, iwork, & info, & lower, upper) !! Driver routine for finding the weighted explicit or implicit orthogonal distance !! regression (ODR) or ordinary linear or nonlinear least squares (OLS) solution. ! Date Written: 860529 (YYMMDD) ! Revision Date: 20040301 (YYYYMMDD) ! Category No.: G2E,I1B1 ! Keywords: Orthogonal distance regression, ! Nonlinear least squares, ! Measurement error models, ! Errors in variables ! Authors: ! Boggs, Paul T. ! Applied and Computational Mathematics Division ! National Institute of Standards and Technology ! Gaithersburg, MD 20899 ! Byrd, Richard H. ! Department of Computer Science ! University of Colorado, Boulder, CO 80309 ! Rogers, Janet E. ! Applied and Computational Mathematics Division ! National Institute of Standards and Technology ! Boulder, CO 80303-3328 ! Schnabel, Robert B. ! Department of Computer Science ! University of Colorado, Boulder, CO 80309 ! and ! Applied and Computational Mathematics Division ! National Institute of Standards and Technology ! Boulder, CO 80303-3328 ! Purpose: REAL(wp) driver routine for finding the weighted explicit or implicit ! orthogonal distance regression (ODR) or ordinary linear or nonlinear least squares (OLS) ! solution (long call statement) ! Description: ! For details, see ODRPACK95 User's Reference Guide. ! References: ! Boggs, P. T., R. H. Byrd, J. R. Donaldson, and R. B. Schnabel (1989), ! "Algorithm 676 --- ODRPACK: Software for Weighted Orthogonal Distance Regression," ! ACM Trans. Math. Software., 15(4):348-364. ! Boggs, P. T., R. H. Byrd, J. E. Rogers, and ! R. B. Schnabel (1992), ! "User's Reference Guide for ODRPACK Version 2.01, ! Software for Weighted Orthogonal Distance Regression," ! National Institute of Standards and Technology ! Internal Report Number 92-4834. ! Boggs, P. T., R. H. Byrd, and R. B. Schnabel (1987), ! "A Stable and Efficient Algorithm for Nonlinear Orthogonal Distance Regression," ! SIAM J. Sci. Stat. Comput., 8(6):1052-1078. use odrpack_kinds, only: negone, zero use odrpack_core, only: fcn_t use odrpack_reports, only: dodphd, dodpe1 procedure(fcn_t) :: fcn !! User-supplied subroutine for evaluating the model. integer, intent(in) :: n !! Number of observations. integer, intent(in) :: m !! Number of columns of data in the independent variable. integer, intent(in) :: np !! Number of function parameters. integer, intent(in) :: nq !! Number of responses per observation. real(wp), intent(inout) :: beta(:) !! Function parameters. `Shape: (np)`. real(wp), intent(in) :: y(:, :) !! Dependent variable. `Shape: (n, nq)`. Unused when the model is implicit. real(wp), intent(in) :: x(:, :) !! Explanatory variable. `Shape: (n, m)`. real(wp), intent(inout), optional :: delta(:, :) !! Error in the `x` data. `Shape: (n, m)`. Initial guess on input and estimated value !! on output. real(wp), intent(in), optional :: we(:, :, :) !! `epsilon` weights. `Shape: ({1,n}, {1,nq}, nq)`. See p. 25. real(wp), intent(in), optional :: wd(:, :, :) !! `delta` weights. `Shape: ({1,n}, {1,m}, m)`. See p. 26. integer, intent(in), optional :: ifixb(:) !! Values designating whether the elements of `beta` are fixed at their input values !! or not. `Shape: (np)`. integer, intent(in), optional :: ifixx(:, :) !! Values designating whether the elements of `x` are fixed at their input values !! or not. `Shape: ({1,n}, m)`. See p. 27. integer, intent(in), optional :: job !! Variable controlling problem initialization and computational method. integer, intent(in), optional :: ndigit !! Number of accurate digits in the function results, as supplied by the user. real(wp), intent(in), optional :: taufac !! Factor used to compute the initial trust region diameter. real(wp), intent(in), optional :: sstol !! Sum-of-squares convergence stopping tolerance. real(wp), intent(in), optional :: partol !! Parameter convergence stopping tolerance. integer, intent(in), optional :: maxit !! Maximum number of iterations allowed. integer, intent(in), optional :: iprint !! Print control variable. integer, intent(in), optional :: lunerr !! Logical unit number for error messages. Available options are: !! 0 => no output. !! 6 => output to standard error (default). !! other => output to logical unit number `lunerr`. integer, intent(in), optional :: lunrpt !! Logical unit number for computation reports. Available options are: !! 0 => no output. !! 6 => output to standard error (default). !! other => output to logical unit number `lunrpt`. real(wp), intent(in), optional :: stpb(:) !! Relative step for computing finite difference derivatives with respect to `beta`. !! `Shape: (np)`. real(wp), intent(in), optional :: stpd(:, :) !! Relative step for computing finite difference derivatives with respect to `delta`. !! `Shape: ({1,n}, m)`. See p. 31. real(wp), intent(in), optional :: sclb(:) !! Scaling values for `beta`. `Shape: (np)`. real(wp), intent(in), optional :: scld(:, :) !! Scaling values for `delta`. `Shape: ({1,n}, m)`. See p. 32. real(wp), intent(inout), optional, target :: work(:) !! Real work space. integer, intent(inout), optional, target :: iwork(:) !! Integer work space. integer, intent(out), optional :: info !! Variable designating why the computations were stopped. real(wp), intent(in), optional :: lower(:) !! Lower bound on `beta`. `Shape: (np)`. real(wp), intent(in), optional :: upper(:) !! Upper bound on `beta`. `Shape: (np)`. ! Local variables integer :: ldwe, ld2we, ldwd, ld2wd, ldifx, ldscld, ldstpd, job_, ndigit_, maxit_, & iprint_, lunerr_, lunrpt_, info_, lwork, liwork, info1_, info2_, info3_, & info4_, info5_ integer :: ifixb_(np), ifixx_(n, m) real(wp) :: taufac_, sstol_, partol_ real(wp) :: lower_(np), we_(n, nq, nq), wd_(n, m, m), stpb_(np), stpd_(n, m), & sclb_(np), scld_(n, m), upper_(np), wd1(1, 1, 1) real(wp), allocatable :: tempret(:, :) real(wp), allocatable, target :: work_local(:) real(wp), pointer :: work_(:) integer, allocatable, target :: iwork_local(:) integer, pointer :: iwork_(:) logical :: head, isodr, restart ! Set LINFO to zero indicating no errors have been found thus far info_ = 0 info1_ = 0 info2_ = 0 info3_ = 0 info4_ = 0 info5_ = 0 ! Set all scalar variable defaults except JOB ldwe = 1 ld2we = 1 ldwd = 1 ld2wd = 1 ldifx = 1 ldscld = 1 ldstpd = 1 iprint_ = -1 lunerr_ = 6 lunrpt_ = 6 maxit_ = -1 ndigit_ = -1 partol_ = negone sstol_ = negone taufac_ = negone head = .true. ! Check for the option arguments for printing (so error messages can be ! printed appropriately from here on out if (present(iprint)) then iprint_ = iprint end if if (present(lunrpt)) then lunrpt_ = lunrpt end if if (lunrpt_ == 6) then lunrpt_ = output_unit end if if (present(lunerr)) then lunerr_ = lunerr end if if (lunerr_ == 6) then lunerr_ = error_unit end if ! Ensure the problem size is valid if (n <= 0) then info5_ = 1 info4_ = 1 end if if (m <= 0) then info5_ = 1 info3_ = 1 end if if (np <= 0) then info5_ = 1 info2_ = 1 end if if (nq <= 0) then info5_ = 1 info1_ = 1 end if if (info5_ /= 0) then info_ = 10000*info5_ + 1000*info4_ + 100*info3_ + 10*info2_ + info1_ if (lunerr_ /= 0 .and. iprint_ /= 0) then call dodphd(head, lunrpt_) call dodpe1( & lunerr_, info_, info5_, info4_, info3_, info2_, info1_, & n, m, nq, & ldscld, ldstpd, ldwe, ld2we, ldwd, ld2wd, & lwork, liwork) end if if (present(info)) then info = info_ end if return end if ! Define LJOB and check that necessary arguments are passed for JOB if (present(job)) then job_ = job if (mod(job, 10000)/1000 >= 1) then if (.not. present(delta)) then info5_ = 7 info4_ = 1 end if end if if (job >= 10000) then if (.not. present(iwork)) then info5_ = 7 info2_ = 1 end if if (.not. present(work)) then info5_ = 7 info3_ = 1 end if end if else job_ = -1 end if if (info5_ /= 0) then info_ = 10000*info5_ + 1000*info4_ + 100*info3_ + 10*info2_ + info1_ if (lunerr_ /= 0 .and. iprint_ /= 0) then call dodphd(head, lunrpt_) call dodpe1( & lunerr_, info_, info5_, info4_, info3_, info2_, info1_, & n, m, nq, & ldscld, ldstpd, ldwe, ld2we, ldwd, ld2wd, & lwork, liwork) end if if (present(info)) then info = info_ end if return end if ! Determine the size of the work arrays isodr = (job_ < 0 .or. mod(job_, 10) <= 1) call workspace_dimensions(n, m, np, nq, isodr, lwork, liwork) ! Allocate the local work arrays, if not provided by user ! The complementary case is treated below, because of the way the info flags are designed if (.not. present(iwork)) then allocate (iwork_local(liwork), stat=info2_) iwork_ => iwork_local end if if (.not. present(work)) then allocate (work_local(lwork), stat=info3_) work_ => work_local end if allocate (tempret(max(n, np), max(nq, m)), stat=info4_) if (info4_ /= 0 .or. info3_ /= 0 .or. info2_ /= 0) then info5_ = 8 end if if (info5_ /= 0) then info_ = 10000*mod(info5_, 10) + 1000*mod(info4_, 10) + & 100*mod(info3_, 10) + 10*mod(info2_, 10) + mod(info1_, 10) if (lunerr_ /= 0 .and. iprint_ /= 0) then call dodphd(head, lunrpt_) call dodpe1( & lunerr_, info_, info5_, info4_, info3_, info2_, info1_, & n, m, nq, & ldscld, ldstpd, ldwe, ld2we, ldwd, ld2wd, & lwork, liwork) end if if (present(info)) then info = info_ end if return end if ! Set internal array variable defaults except IWORK and WORK ifixb_(1) = -1 ifixx_(1, 1) = -1 lower_(1:np) = -huge(zero) sclb_(1) = negone scld_(1, 1) = negone stpb_(1) = negone stpd_(1, 1) = negone upper_(1:np) = huge(zero) we_(1, 1, 1) = negone wd_(1, 1, 1) = negone ! Check the size of required arguments and return errors if they are too small if (size(beta) < np) then info1_ = info1_ + 1 end if if (any(size(y) < [n, nq])) then info1_ = info1_ + 2 end if if (any(size(x) < [n, m])) then info1_ = info1_ + 4 end if ! Check the presence of optional arguments and copy their values internally or ! report errors as necessary if (present(ifixb)) then if (size(ifixb) < np) then info1_ = info1_ + 64 end if if (ifixb(1) < 0) then ifixb_(1) = ifixb(1) else ifixb_(1:np) = ifixb(1:np) end if end if if (present(ifixx)) then ldifx = size(ifixx, 1) if (any(size(ifixx) <= [0, 0])) then info1_ = info1_ + 128 end if if (.not. (ifixx(1, 1) < 0 .or. ldifx == 1 .or. ldifx >= n) & .or. size(ifixx, 2) < m) then info1_ = info1_ + 128 end if if (ldifx > n) then ldifx = n end if if (ifixx(1, 1) < 0) then ifixx_(1, 1) = ifixx(1, 1) else ifixx_(1:ldifx, 1:m) = ifixx(1:ldifx, 1:m) end if end if if (present(iwork)) then if (size(iwork) >= liwork) then iwork_ => iwork(1:liwork) else info1_ = info1_ + 8192 end if end if if (present(maxit)) then maxit_ = maxit end if if (present(ndigit)) then ndigit_ = ndigit end if if (present(partol)) then partol_ = partol end if if (present(sclb)) then if (size(sclb) < np) then info1_ = info1_ + 1024 end if if (sclb(1) <= zero) then sclb_(1) = sclb(1) else sclb_(1:np) = sclb(1:np) end if end if if (present(scld)) then ldscld = size(scld, 1) if (any(size(scld) <= [0, 0])) then info1_ = info1_ + 2048 end if if (.not. (scld(1, 1) <= zero .or. ldscld == 1 .or. ldscld >= n) & .or. size(scld, 2) < m) then info1_ = info1_ + 2048 end if if (ldscld > n) then ldscld = n end if if (scld(1, 1) <= zero) then scld_(1, 1) = scld(1, 1) else scld_(1:ldscld, 1:m) = scld(1:ldscld, 1:m) end if end if if (present(sstol)) then sstol_ = sstol end if if (present(stpb)) then if (size(stpb) < np) then info1_ = info1_ + 256 end if if (stpb(1) <= zero) then stpb_(1) = stpb(1) else stpb_(1:np) = stpb(1:np) end if end if if (present(stpd)) then ldstpd = size(stpd, 1) if (any(size(stpd) <= [0, 0])) then info1_ = info1_ + 512 end if if (.not. (stpd(1, 1) <= zero .or. ldstpd == 1 .or. ldstpd >= n) & .or. size(stpd, 2) < m) then info1_ = info1_ + 512 end if if (ldstpd > n) then ldstpd = n end if if (stpd(1, 1) <= zero) then stpd_(1, 1) = stpd(1, 1) else stpd_(1:ldstpd, 1:m) = stpd(1:ldstpd, 1:m) end if end if if (present(taufac)) then taufac_ = taufac end if if (present(we)) then ldwe = size(we, 1) ld2we = size(we, 2) if (any(size(we) <= [0, 0, 0])) then info1_ = info1_ + 16 end if if (.not. (we(1, 1, 1) < zero .or. & ((ldwe == 1 .or. ldwe >= n) .and. & (ld2we == 1 .or. ld2we >= nq))) .or. size(we, 3) < nq) then info1_ = info1_ + 16 end if if (ldwe > n) then ldwe = n end if if (ld2we > nq) then ld2we = nq end if if (we(1, 1, 1) < zero) then we_(1, 1, 1) = we(1, 1, 1) else we_(1:ldwe, 1:ld2we, 1:nq) = we(1:ldwe, 1:ld2we, 1:nq) end if end if if (present(wd)) then ldwd = size(wd, 1) ld2wd = size(wd, 2) if (any(size(wd) <= [0, 0, 0])) then info1_ = info1_ + 32 end if if (.not. (wd(1, 1, 1) < zero .or. & ((ldwd == 1 .or. ldwd >= n) .and. & (ld2wd == 1 .or. ld2wd >= m))) .or. size(wd, 3) < m) then info1_ = info1_ + 32 end if if (ldwd > n) then ldwd = n end if if (ld2wd > m) then ld2wd = m end if if (wd(1, 1, 1) <= zero) then wd_(1, 1, 1) = wd(1, 1, 1) else wd_(1:ldwd, 1:ld2wd, 1:m) = wd(1:ldwd, 1:ld2wd, 1:m) end if end if if (present(work)) then if (size(work) >= lwork) then work_ => work(1:lwork) else info1_ = info1_ + 4096 end if end if restart = (mod(job_/10000, 10) >= 1) if (.not. restart) then work_ = zero iwork_ = 0 end if if (present(delta) .and. (.not. restart)) then if (any(shape(delta) < [n, m])) then info1_ = info1_ + 8 end if work_(1:n*m) = reshape(delta(1:n, 1:m), [n*m]) end if if (present(lower)) then if (size(lower) < np) then info1_ = info1_ + 32768 end if lower_(1:np) = lower(1:np) end if if (present(upper)) then if (size(upper) < np) then info1_ = info1_ + 16384 end if upper_(1:np) = upper(1:np) end if ! Report an error if any of the array sizes didn't match. if (info1_ /= 0) then info_ = 100000 + info1_ info1_ = 0 if (lunerr_ /= 0 .and. iprint_ /= 0) then call dodphd(head, lunrpt_) call dodpe1( & lunerr_, info_, info5_, info4_, info3_, info2_, info1_, & n, m, nq, & ldscld, ldstpd, ldwe, ld2we, ldwd, ld2wd, & lwork, liwork) end if if (present(info)) then info = info_ end if return end if if (wd_(1, 1, 1) /= 0) then call dodcnt & (fcn, & n, m, np, nq, & beta(1:np), & y(1:n, 1:nq), n, x(1:n, 1:m), n, & we_(1:ldwe, 1:ld2we, 1:nq), ldwe, ld2we, & wd_(1:ldwd, 1:ld2wd, 1:m), ldwd, ld2wd, & ifixb_, ifixx_(1:ldifx, 1:m), ldifx, & job_, ndigit_, taufac_, & sstol_, partol_, maxit_, & iprint_, lunerr_, lunrpt_, & stpb_, stpd_(1:ldstpd, 1:m), ldstpd, & sclb_, scld_(1:ldscld, 1:m), ldscld, & work_, lwork, tempret, iwork_, liwork, & info_, & lower_, upper_) else wd1(1, 1, 1) = negone call dodcnt & (fcn, & n, m, np, nq, & beta(1:np), & y(1:n, 1:nq), n, x(1:n, 1:m), n, & we_(1:ldwe, 1:ld2we, 1:nq), ldwe, ld2we, & wd1, 1, 1, & ifixb_, ifixx_(1:ldifx, 1:m), ldifx, & job_, ndigit_, taufac_, & sstol_, partol_, maxit_, & iprint_, lunerr_, lunrpt_, & stpb_, stpd_(1:ldstpd, 1:m), ldstpd, & sclb_, scld_(1:ldscld, 1:m), ldscld, & work_, lwork, tempret, iwork_, liwork, & info_, & lower_, upper_) end if if (present(delta)) then delta(1:n, 1:m) = reshape(work_(1:n*m), [n, m]) end if if (present(info)) then info = info_ end if end subroutine odr impure subroutine dodcnt & (fcn, n, m, np, nq, beta, y, ldy, x, ldx, & we, ldwe, ld2we, wd, ldwd, ld2wd, ifixb, ifixx, ldifx, & job, ndigit, taufac, sstol, partol, maxit, iprint, lunerr, lunrpt, & stpb, stpd, ldstpd, sclb, scld, ldscld, & work, lwork, tempret, iwork, liwork, & info, & lower, upper) !! Driver routine for finding the weighted explicit or implicit orthogonal distance !! regression (ODR) or ordinary linear or nonlinear least squares (OLS) solution. ! Routines Called DODDRV ! Date Written 860529 (YYMMDD) ! Revision Date 920304 (YYMMDD) use odrpack_kinds, only: zero, one, three use odrpack_core, only: fcn_t procedure(fcn_t) :: fcn !! User-supplied subroutine for evaluating the model. integer, intent(in) :: n !! The number of observations. integer, intent(in) :: m !! The number of columns of data in the independent variable. integer, intent(in) :: np !! The number of function parameters. integer, intent(in) :: nq !! The number of responses per observation. real(wp), intent(inout) :: beta(np) !! The function parameters. real(wp), intent(in) :: y(ldy, nq) !! The dependent variable. Unused when the model is implicit. integer, intent(in) :: ldy !! The leading dimension of array `y`. real(wp), intent(in) :: x(ldx, m) !! The independent variable. integer, intent(in) :: ldx !! The leading dimension of array `x`. real(wp), intent(inout) :: we(ldwe, ld2we, nq) !! The `epsilon` weights. integer, intent(in) :: ldwe !! The leading dimension of array `we`. integer, intent(in) :: ld2we !! The second dimension of array `we`. real(wp), intent(in) :: wd(ldwd, ld2wd, m) !! The `delta` weights. integer, intent(in) :: ldwd !! The leading dimension of array `wd`. integer, intent(in) :: ld2wd !! The second dimension of array `wd`. integer, intent(in) :: ifixb(np) !! The values designating whether the elements of `beta` are fixed at their input !! values or not. integer, intent(in) :: ifixx(ldifx, m) !! The values designating whether the elements of `x` are fixed at their input values !! or not. integer, intent(in) :: ldifx !! The leading dimension of array `ifixx`. integer, intent(inout) :: job !! The variable controlling problem initialization and computational method. integer, intent(in) :: ndigit !! The number of accurate digits in the function results, as supplied by the user. real(wp), intent(in) :: taufac !! The factor used to compute the initial trust region diameter. real(wp), intent(in) :: sstol !! The sum-of-squares convergence stopping tolerance. real(wp), intent(in) :: partol !! The user-supplied parameter convergence stopping tolerance. integer, intent(in) :: maxit !! The maximum number of iterations allowed. integer, intent(in) :: iprint !! The print control variables. integer, intent(in) :: lunerr !! The logical unit number used for error messages. integer, intent(in) :: lunrpt !! The logical unit number used for computation reports. real(wp), intent(in) :: stpb(np) !! The relative step for computing finite difference derivatives with respect to `beta`. real(wp), intent(in) :: stpd(ldstpd, m) !! The relative step for computing finite difference derivatives with respect to `delta`. integer, intent(in) :: ldstpd !! The leading dimension of array `stpd`. real(wp), intent(in) :: sclb(np) !! The scaling values for `beta`. real(wp), intent(in) :: scld(ldscld, m) !! The scaling value for `delta`. integer, intent(in) :: ldscld !! The leading dimension of array `scld`. real(wp), intent(inout) :: work(lwork) !! The real work space. integer, intent(in) :: lwork !! The length of vector `work`. real(wp), intent(inout) :: tempret(:, :) !! Temporary work array for holding return values before copying to a lower rank array. integer, intent(inout) :: iwork(liwork) !! The integer work space. integer, intent(in) :: liwork !! The length of vector `iwork`. integer, intent(out) :: info !! The variable designating why the computations were stopped. real(wp), intent(in) :: lower(np) !! The lower bound on `beta`. real(wp), intent(in) :: upper(np) !! The upper bound on `beta`. ! Local scalars real(wp), parameter :: pcheck = 1.0E3_wp, pstart = 1.0E1_wp, pfac = 1.0E1_wp real(wp) :: cnvtol, tstimp integer :: iprnti, ipr1, ipr2, ipr2f, ipr3, jobi, job1, job2, job3, job4, job5, & maxiti, maxit1 logical :: done, fstitr, head, implct, prtpen ! Local arrays real(wp) :: pnlty(1, 1, 1) ! Variable Definitions (alphabetically) ! BETA: The function parameters. ! CNVTOL: The convergence tolerance for implicit models. ! DONE: The variable designating whether the inplicit solution has been found (DONE=TRUE) ! or not (DONE=FALSE). ! FCN: The user-supplied subroutine for evaluating the model. ! FSTITR: The variable designating whether this is the first iteration (FSTITR=TRUE) ! or not (FSTITR=FALSE). ! HEAD: The variable designating whether the heading is to be printed (HEAD=TRUE) ! or not (HEAD=FALSE). ! IFIXB: The values designating whether the elements of BETA are fixed at their input ! values or not. ! IFIXX: The values designating whether the elements of X are fixed at their input ! values or not. ! IMPLCT: The variable designating whether the solution is by implicit ODR (IMPLCT=TRUE) ! or explicit ODR (IMPLCT=FALSE). ! INFO: The variable designating why the computations were stopped. ! IPRINT: The print control variables. ! IPRNTI: The print control variables. ! IPR1: The 1st digit of the print control variable. ! IPR2: The 2nd digit of the print control variable. ! IPR3: The 3rd digit of the print control variable. ! IPR4: The 4th digit of the print control variable. ! IWORK: The integer work space. ! JOB: The variable controling problem initialization and computational method. ! JOBI: The variable controling problem initialization and computational method. ! JOB1: The 1st digit of the variable JOB. ! JOB2: The 2nd digit of the variable JOB. ! JOB3: The 3rd digit of the variable JOB. ! JOB4: The 4th digit of the variable JOB. ! JOB5: The 5th digit of the variable JOB. ! LDIFX: The leading dimension of array IFIXX. ! LDSCLD: The leading dimension of array SCLD. ! LDSTPD: The leading dimension of array STPD. ! LDWD: The leading dimension of array WD. ! LDWE: The leading dimension of array WE. ! LDX: The leading dimension of array X. ! LDY: The leading dimension of array Y. ! LD2WD: The second dimension of array WD. ! LD2WE: The second dimension of array WE. ! LIWORK: The length of vector IWORK. ! LOWER: The lower bound for BETA. ! LUNERR: The logical unit number used for error messages. ! LUNRPT: The logical unit number used for computation reports. ! LWORK: The length of vector work. ! M: The number of columns of data in the independent variable. ! MAXIT: The maximum number of iterations allowed. ! MAXITI: For implicit models, the number of iterations allowed for the current penalty ! parameter value. ! MAXIT1: For implicit models, the number of iterations allowed for the next penalty ! parameter value. ! N: The number of observations. ! NDIGIT: The number of accurate digits in the function results, as supplied by the user. ! NP: The number of function parameters. ! NQ: The number of responses per observation. ! PARTOL: The user supplied parameter convergence stopping tolerance. ! PCHECK: The value designating the minimum penalty parameter allowed before the implicit ! problem can be considered solved. ! PFAC: The factor for increasing the penalty parameter. ! PNLTY: The penalty parameter for an implicit model. ! PRTPEN: The value designating whether the penalty parameter is to be printed in the ! iteration report (PRTPEN=TRUE) or not (PRTPEN=FALSE). ! PSTART: The factor for increasing the penalty parameter. ! SCLB: The scaling values for BETA. ! SCLD: The scaling values for DELTA. ! STPB: The relative step for computing finite difference derivatives with respect to BETA. ! STPD: The relative step for computing finite difference derivatives with respect to DELTA. ! SSTOL: The sum-of-squares convergence stopping tolerance. ! TAUFAC: The factor used to compute the initial trust region diameter. ! TSTIMP: The relative change in the parameters between the initial values and the solution. ! UPPER: The upper bound for BETA. ! WD: The DELTA weights. ! WE: The EPSILON weights. ! WORK: The real work space. ! X: The independent variable. ! Y: The dependent variable. Unused when the model is implicit. implct = mod(job, 10) == 1 fstitr = .true. head = .true. prtpen = .false. if (implct) then ! Set up for implicit problem if (iprint >= 0) then ipr1 = mod(iprint, 10000)/1000 ipr2 = mod(iprint, 1000)/100 ipr2f = mod(iprint, 100)/10 ipr3 = mod(iprint, 10) else ipr1 = 2 ipr2 = 0 ipr2f = 0 ipr3 = 1 end if iprnti = ipr1*1000 + ipr2*100 + ipr2f*10 job5 = mod(job, 100000)/10000 job4 = mod(job, 10000)/1000 job3 = mod(job, 1000)/100 job2 = mod(job, 100)/10 job1 = mod(job, 10) jobi = job5*10000 + job4*1000 + job3*100 + job2*10 + job1 if (we(1, 1, 1) <= zero) then pnlty(1, 1, 1) = -pstart else pnlty(1, 1, 1) = -we(1, 1, 1) end if if (partol < zero) then cnvtol = epsilon(zero)**(one/three) else cnvtol = min(partol, one) end if if (maxit >= 1) then maxiti = maxit else maxiti = 100 end if done = maxiti == 0 prtpen = .true. do while (.true.) call doddrv & (head, fstitr, prtpen, & fcn, n, m, np, nq, beta, y, ldy, x, ldx, & pnlty, 1, 1, wd, ldwd, ld2wd, ifixb, ifixx, ldifx, & jobi, ndigit, taufac, sstol, cnvtol, maxiti, & iprnti, lunerr, lunrpt, & stpb, stpd, ldstpd, sclb, scld, ldscld, & work, lwork, tempret, iwork, liwork, & maxit1, tstimp, info, lower, upper) if (done) then return else done = maxit1 <= 0 .or. (abs(pnlty(1, 1, 1)) >= pcheck .and. tstimp <= cnvtol) end if if (done) then if (tstimp <= cnvtol) then info = (info/10)*10 + 2 else info = (info/10)*10 + 4 end if jobi = 10000 + 1000 + job3*100 + job2*10 + job1 maxiti = 0 iprnti = ipr3 else prtpen = .true. pnlty(1, 1, 1) = pfac*pnlty(1, 1, 1) jobi = 10000 + 1000 + 000 + job2*10 + job1 maxiti = maxit1 iprnti = 0000 + ipr2*100 + ipr2f*10 end if end do else ! Explicit problem call doddrv & (head, fstitr, prtpen, & fcn, n, m, np, nq, beta, y, ldy, x, ldx, & we, ldwe, ld2we, wd, ldwd, ld2wd, ifixb, ifixx, ldifx, & job, ndigit, taufac, sstol, partol, maxit, & iprint, lunerr, lunrpt, & stpb, stpd, ldstpd, sclb, scld, ldscld, & work, lwork, tempret, iwork, liwork, & maxit1, tstimp, info, lower, upper) end if end subroutine dodcnt impure subroutine doddrv & (head, fstitr, prtpen, & fcn, n, m, np, nq, beta, y, ldy, x, ldx, & we, ldwe, ld2we, wd, ldwd, ld2wd, ifixb, ifixx, ldifx, & job, ndigit, taufac, sstol, partol, maxit, & iprint, lunerr, lunrpt, & stpb, stpd, ldstpd, sclb, scld, ldscld, & work, lwork, tempret, iwork, liwork, & maxit1, tstimp, info, lower, upper) !! Perform error checking and initialization, and begin procedure for performing orthogonal !! distance regression (ODR) or ordinary linear or nonlinear least squares (OLS). ! Routines Called FCN, DCOPY, DDOT, DETAF, DFCTRW, DFLAGS, ! DINIWK, DIWINF, DJCK, DNRM2, DODCHK, DODMN, ! DODPER, DPACK, DSETN, DUNPAC, DWGHT, DWINF, DERSTEP ! Date Written 860529 (YYMMDD) ! Revision Date 920619 (YYMMDD) use odrpack_kinds, only: zero, one, ten, p5 => half use odrpack_core, only: fcn_t, detaf, dfctrw, dflags, diniwk, diwinf, djck, dodchk, & dpack, dsetn, dunpac, dwght, dwinf, derstep, mbfb use odrpack_reports, only: dodper use blas_interfaces, only: ddot, dnrm2, dcopy logical, intent(inout) :: head !! The variable designating whether the heading is to be printed (`head = .true.`) !! or not (`head = .false.`). logical, intent(inout) :: fstitr !! The variable designating whether this is the first iteration (`fstitr = .true.`) !! or not (`fstitr = .false.`). logical, intent(inout) :: prtpen !! The variable designating whether the penalty parameter is to be printed in the !! iteration report (`prtpen = .true.`) or not (`prtpen = .false.`). procedure(fcn_t) :: fcn !! The user-supplied subroutine for evaluating the model. integer, intent(in) :: n !! The number of observations. integer, intent(in) :: m !! The number of columns of data in the explanatory variable. integer, intent(in) :: np !! The number of function parameters. integer, intent(in) :: nq !! The number of responses per observation. real(wp), intent(inout) :: beta(np) !! The function parameters. real(wp), intent(in) :: y(ldy, nq) !! The dependent variable. Unused when the model is implicit. integer, intent(in) :: ldy !! The leading dimension of array `y`. real(wp), intent(in) :: x(ldx, m) !! The explanatory variable. integer, intent(in) :: ldx !! The leading dimension of array `x`. real(wp), intent(inout) :: we(ldwe, ld2we, nq) !! The `epsilon` weights. integer, intent(in) :: ldwe !! The leading dimension of array `we`. integer, intent(in) :: ld2we !! The second dimension of array `we`. real(wp), intent(in) :: wd(ldwd, ld2wd, m) !! The `delta` weights. integer, intent(in) :: ldwd !! The leading dimension of array `wd`. integer, intent(in) :: ld2wd !! The second dimension of array `wd`. integer, intent(in) :: ifixb(np) !! The values designating whether the elements of `beta` are fixed at their input !! values or not. integer, intent(in) :: ifixx(ldifx, m) !! The values designating whether the elements of `x` are fixed at their input !! values or not. integer, intent(in) :: ldifx !! The leading dimension of array `ifixx`. integer, intent(inout) :: job !! The variable controlling problem initialization and computational method. integer, intent(in) :: ndigit !! The number of accurate digits in the function results, as supplied by the user. real(wp), intent(in) :: taufac !! The factor used to compute the initial trust region diameter. real(wp), intent(in) :: sstol !! The sum-of-squares convergence stopping tolerance. real(wp), intent(in) :: partol !! The parameter convergence stopping tolerance. integer, intent(in) :: maxit !! The maximum number of iterations allowed. integer, intent(in) :: iprint !! The print control variable. integer, intent(in) :: lunerr !! The logical unit number used for error messages. integer, intent(in) :: lunrpt !! The logical unit number used for computation reports. real(wp), intent(in) :: stpb(np) !! The step size for finite difference derivatives with respect to `beta`. real(wp), intent(in) :: stpd(ldstpd, m) !! The step size for finite difference derivatives with respect to `delta`. integer, intent(in) :: ldstpd !! The leading dimension of array `stpd`. real(wp), intent(in) :: sclb(np) !! The scaling values for `beta`. real(wp), intent(in) :: scld(ldscld, m) !! The scaling values for `delta`. integer, intent(in) :: ldscld !! The leading dimension of array `scld`. real(wp), intent(inout) :: work(lwork) !! The real work space. integer, intent(in) :: lwork !! The length of vector `work`. real(wp), intent(inout) :: tempret(:, :) !! Temporary work array for holding return values before copying to a lower rank array. integer, intent(inout) :: iwork(liwork) !! The integer work space. integer, intent(in) :: liwork !! The length of vector `iwork`. integer, intent(out) :: maxit1 !! For implicit models, the iterations allowed for the next penalty parameter value. real(wp), intent(out) :: tstimp !! The relative change in the parameters between the initial values and the solution. integer, intent(inout) :: info !! The variable designating why the computations were stopped. real(wp), intent(in) :: lower(np) !! The lower bound for `beta`. real(wp), intent(in) :: upper(np) !! The upper bound for `beta`. ! Local scalars real(wp) :: epsmac, eta integer :: actrsi, alphai, betaci, betani, betasi, beta0i, boundi, deltai, & deltni, deltsi, diffi, epsmai, etai, fi, fjacbi, fjacdi, fni, fsi, i, & idfi, int2i, iprini, iranki, istop, istopi, jobi, jpvti, k, ldtt, & ldtti, liwkmn, loweri, luneri, lunrpi, lwkmn, lwrk, maxiti, msgb, & msgd, neta, netai, nfev, nfevi, niteri, njev, njevi, nnzw, nnzwi, & npp, nppi, nrow, nrowi, ntol, ntoli, olmavi, omegai, partli, pnormi, & prersi, qrauxi, rcondi, rnorsi, rvari, sdi, si, ssfi, ssi, sstoli, & taufci, taui, ti, tti, ui, upperi, vcvi, we1i, wrk1i, wrk2i, wrk3i, & wrk4i, wrk5i, wrk6i, wrk7i, wrk, wssi, wssdei, wssepi, xplusi logical :: anajac, cdjac, chkjac, dovcv, implct, initd, isodr, redoj, restrt ! Local arrays real(wp) :: betaj(np) integer :: interval(np) ! Variable Definitions (alphabetically) ! ACTRSI: The location in array work of variable ACTRS. ! ALPHAI: The location in array work of variable ALPHA. ! ANAJAC: The variable designating whether the Jacobians are computed by finite ! differences (ANAJAC=FALSE) or not (ANAJAC=TRUE). ! BETA: The function parameters. ! BETACI: The starting location in array WORK of array BETAC. ! BETAJ: The parameters to use in the derivative checking algorithm. ! BETANI: The starting location in array WORK of array BETAN. ! BETASI: The starting location in array WORK of array BETAS. ! BETA0I: The starting location in array WORK of array BETA0. ! CDJAC: The variable designating whether the Jacobians are computed by central ! differences (CDJAC=TRUE) or forward differences (CDJAC=FALSE). ! CHKJAC: The variable designating whether the user supplied Jacobians are to be ! checked (CHKJAC=TRUE) or not (CHKJAC=FALSE). ! DELTAI: The starting location in array WORK of array DELTA. ! DELTNI: The starting location in array WORK of array DELTAN. ! DELTSI: The starting location in array WORK of array DELTAS. ! DIFFI: The starting location in array WORK of array DIFF. ! DOVCV: The variable designating whether the covariance matrix is to be computed ! (DOVCV=TRUE) or not (DOVCV=FALSE). ! EPSMAI: The location in array WORK of variable EPSMAC. ! ETA: The relative noise in the function results. ! ETAI: The location in array WORK of variable ETA. ! FCN: THE USER SUPPLIED SUBROUTINE FOR EVALUATING THE MODEL. ! FI: The starting location in array WORK of array F. ! FJACBI: The starting location in array WORK of array FJACB. ! FJACDI: The starting location in array WORK of array FJACD. ! FNI: The starting location in array WORK of array FN. ! FSI: The starting location in array WORK of array FS. ! FSTITR: The variable designating whether this is the first iteration (FSTITR=TRUE) ! or not (FSTITR=FALSE). ! HEAD: The variable designating whether the heading is to be printed (HEAD=TRUE) ! or not (HEAD=FALSE). ! I: An index variable. ! IDFI: The location in array iwork of variable IDF. ! IFIXB: The values designating whether the elements of BETA are fixed at their input ! values or not. ! IFIXX: The values designating whether the elements of X are fixed at their input ! values or not. ! IMPLCT: The variable designating whether the solution is by implicit ODR (IMPLCT=TRUE) ! or explicit ODR (IMPLCT=FALSE). ! INFO: The variable designating why the computations were stopped. ! INITD: The variable designating whether DELTA is to be initialized to zero (INITD=TRUE) ! or to the values in the first N by M elements of array WORK (INITD=FALSE). ! INT2I: The location in array IWORK of variable INT2. ! INTERVAL: Specifies which checks can be performed when checking derivatives based on the ! interval of the bound constraints. ! IPRINI: The location in array iwork of variable IPRINT. ! IPRINT: The print control variable. ! IRANKI: The location in array IWORK of variable IRANK. ! ISODR: The variable designating whether the solution is by ODR (ISODR=TRUE) ! or by OLS (ISODR=FALSE). ! ISTOP: The variable designating whether there are problems computing the function ! at the current BETA and DELTA. ! ISTOPI: The location in array IWORK of variable ISTOP. ! IWORK: The integer work space. ! JOB: The variable controling problem initialization and computational method. ! JOBI: The location in array IWORK of variable JOB. ! JPVTI: The starting location in array IWORK of array JPVT. ! K: An index variable. ! LDIFX: The leading dimension of array IFIXX. ! LDSCLD: The leading dimension of array SCLD. ! LDSTPD: The leading dimension of array STPD. ! LDTT: The leading dimension of array TT. ! LDTTI: The location in array IWORK of variable LDTT. ! LDWD: The leading dimension of array WD. ! LDWE: The leading dimension of array WE. ! LDX: The leading dimension of array X. ! LDY: The leading dimension of array Y. ! LD2WD: The second dimension of array WD. ! LD2WE: The second dimension of array WE. ! LIWKMN: The minimum acceptable length of array IWORK. ! LIWORK: The length of vector IWORK. ! LOWER: The lower bound for BETA. ! LUNERI: The location in array IWORK of variable LUNERR. ! LUNERR: The logical unit number used for error messages. ! LUNRPI: The location in array IWORK of variable LUNRPT. ! LUNRPT: The logical unit number used for computation reports. ! LWKMN: The minimum acceptable length of array WORK. ! LWORK: The length of vector WORK. ! LWRK: The length of vector WRK. ! M: The number of columns of data in the explanatory variable. ! MAXIT: The maximum number of iterations allowed. ! MAXIT1: For implicit models, the iterations allowed for the next penalty parameter value. ! MAXITI: The location in array IWORK of variable MAXIT. ! MSGB: The starting location in array IWORK of array MSGB. ! MSGD: The starting location in ARRAY IWORK of array MSGD. ! N: The number of observations. ! NDIGIT: The number of accurate digits in the function results, as supplied by the user. ! NETA: The number of accurate digits in the function results. ! NETAI: The location in array IWORK of variable NETA. ! NFEV: The number of function evaluations. ! NFEVI: The location in array IWORK of variable NFEV. ! NITERI: The location in array IWORK of variable NITER. ! NJEV: The number of Jacobian evaluations. ! NJEVI: The location in array IWORK of variable NJEV. ! NNZW: The number of nonzero observational error weights. ! NNZWI: The location in array IWORK of variable NNZW. ! NP: The number of function parameters. ! NPP: The number of function parameters being estimated. ! NPPI: The location in array IWORK of variable NPP. ! NQ: The number of responses per observation. ! NROW: The row number at which the derivative is to be checked. ! NROWI: The location in array IWORK of variable NROW. ! NTOL: The number of digits of agreement required between the numerical derivatives ! and the user supplied derivatives, set by DJCK. ! NTOLI: The location in array IWORK of variable NTOL. ! OLMAVI: The location in array WORK of variable OLMAVG. ! OMEGAI: The starting location in array WORK of array OMEGA. ! PARTLI: The location in array WORK of variable PARTOL. ! PARTOL: The parameter convergence stopping tolerance. ! PNORM: The norm of the scaled estimated parameters. ! PNORMI: The location in array WORK of variable PNORM. ! PRERSI: The location in array WORK of variable PRERS. ! PRTPEN: The variable designating whether the penalty parameter is to be printed in ! the iteration report (PRTPEN=TRUE) or not (PRTPEN=FALSE). ! QRAUXI: The starting location in array WORK of array QRAUX. ! RCONDI: The location in array WORK of variable RCOND. ! REDOJ: The variable designating whether the Jacobian matrix is to be recomputed for ! the computation of the covariance matrix (REDOJ=TRUE) or not (REDOJ=FALSE). ! RESTRT: The variable designating whether the call is a restart (RESTRT=TRUE) or ! not (RESTRT=FALSE). ! RNORSI: The location in array WORK of variable RNORMS. ! RVARI: The location in array WORK of variable RVAR. ! SCLB: The scaling values for BETA. ! SCLD: The scaling values for DELTA. ! SDI: The starting location in array WORK of array SD. ! SI: The starting location in array WORK of array S. ! SSFI: The starting location in array WORK of array SSF. ! SSI: The starting location in array WORK of array SS. ! SSTOL: The sum-of-squares convergence stopping tolerance. ! SSTOLI: The location in array WORK of variable SSTOL. ! STPB: The step size for finite difference derivatives wrt BETA. ! STPD: The step size for finite difference derivatives wrt DELTA. ! TAUFAC: The factor used to compute the initial trust region diameter. ! TAUFCI: The location in array WORK of variable TAUFAC. ! TAUI: The location in array WORK of variable TAU. ! TI: The starting location in array WORK of array T. ! TSTIMP: The relative change in the parameters between the initial values and ! the solution. ! TTI: The starting location in array WORK of array TT. ! UI: The starting location in array WORK of array U. ! UPPER: The upper bound for BETA. ! VCVI: The starting location in array WORK of array VCV. ! WD: The DELTA weights. ! WE: The EPSILON weights. ! WE1I: The starting location in array WORK of array WE1. ! WORK: The REAL (wp) work space. ! WRK: The starting location in array WORK of array WRK, equivalenced to WRK1 and WRK2. ! WRK1I: The starting location in array WORK of array WRK1. ! WRK2I: The starting location in array WORK of array WRK2. ! WRK3I: The starting location in array WORK of array WRK3. ! WRK4I: The starting location in array WORK of array WRK4. ! WRK5I: The starting location in array WORK of array WRK5. ! WRK6I: The starting location in array WORK of array WRK6. ! WRK7I: The starting location in array WORK of array WRK7. ! WSSI: The location in array WORK of variable wss. ! WSSDEI: The location in array WORK of variable WSSDEL. ! WSSEPI: The location in array WORK of variable WSSEPS. ! X: The explanatory variable. ! XPLUSI: The starting location in array WORK of array XPLUSD. ! Y: The dependent variable. Unused when the model is implicit. ! Initialize necessary variables call dflags(job, restrt, initd, dovcv, redoj, anajac, cdjac, chkjac, isodr, implct) ! Set starting locations within integer workspace ! (invalid values of M, NP and/or NQ are handled reasonably by DIWINF) call diwinf(m, np, nq, & msgb, msgd, jpvti, istopi, & nnzwi, nppi, idfi, & jobi, iprini, luneri, lunrpi, & nrowi, ntoli, netai, & maxiti, niteri, nfevi, njevi, int2i, iranki, ldtti, & boundi, & liwkmn) ! Set starting locations within REAL (wp) work space ! (invalid values of N, M, NP, NQ, LDWE and/or LD2WE ! are handled reasonably by DWINF) call dwinf(n, m, np, nq, ldwe, ld2we, isodr, & deltai, fi, xplusi, fni, sdi, vcvi, & rvari, wssi, wssdei, wssepi, rcondi, etai, & olmavi, taui, alphai, actrsi, pnormi, rnorsi, prersi, & partli, sstoli, taufci, epsmai, & beta0i, betaci, betasi, betani, si, ssi, ssfi, qrauxi, ui, & fsi, fjacbi, we1i, diffi, & deltsi, deltni, ti, tti, omegai, fjacdi, & wrk1i, wrk2i, wrk3i, wrk4i, wrk5i, wrk6i, wrk7i, & loweri, upperi, & lwkmn) if (isodr) then wrk = wrk1i lwrk = n*m*nq + n*nq else wrk = wrk2i lwrk = n*nq end if ! Update the penalty parameters ! (WE(1,1,1) is not a user supplied array in this case) if (restrt .and. implct) then we(1, 1, 1) = max(work(we1i)**2, abs(we(1, 1, 1))) work(we1i) = -sqrt(abs(we(1, 1, 1))) end if if (restrt) then ! Reset maximum number of iterations if (maxit >= 0) then iwork(maxiti) = iwork(niteri) + maxit else iwork(maxiti) = iwork(niteri) + 10 end if if (iwork(niteri) < iwork(maxiti)) then info = 0 end if if (job >= 0) iwork(jobi) = job if (iprint >= 0) iwork(iprini) = iprint if (partol >= zero .and. partol < one) work(partli) = partol if (sstol >= zero .and. sstol < one) work(sstoli) = sstol work(olmavi) = work(olmavi)*iwork(niteri) if (implct) then call dcopy(n*nq, work(fni), 1, work(fi), 1) else work(fi:fi + (n*nq - 1)) = & work(fni:fni + (n*nq - 1)) - reshape(y(1:n, :), shape=[n*nq]) end if call dwght(n, nq, & reshape(work(we1i:we1i + ldwe*ld2we*nq - 1), [ldwe, ld2we, nq]), & ldwe, ld2we, & reshape(work(fi:fi + n*nq - 1), [n, nq]), tempret(1:n, 1:nq)) work(fi:fi + n*nq - 1) = reshape(tempret(1:n, 1:nq), [n*nq]) work(wssepi) = ddot(n*nq, work(fi), 1, work(fi), 1) work(wssi) = work(wssepi) + work(wssdei) else ! Perform error checking info = 0 call dodchk(n, m, np, nq, & isodr, anajac, implct, & beta, ifixb, & ldx, ldifx, ldscld, ldstpd, ldwe, ld2we, ldwd, ld2wd, & ldy, & lwork, lwkmn, liwork, liwkmn, & sclb, scld, stpb, stpd, & info, & lower, upper) if (info > 0) then goto 50 end if ! Initialize work vectors as necessary do i = n*m + n*nq + 1, lwork work(i) = zero end do do i = 1, liwork iwork(i) = 0 end do call diniwk(n, m, np, & work, lwork, iwork, liwork, & x, ldx, ifixx, ldifx, scld, ldscld, & beta, sclb, & sstol, partol, maxit, taufac, & job, iprint, lunerr, lunrpt, & lower, upper, & epsmai, sstoli, partli, maxiti, taufci, & jobi, iprini, luneri, lunrpi, & ssfi, tti, ldtti, deltai, & loweri, upperi, boundi) iwork(msgb) = -1 iwork(msgd) = -1 work(taui) = -work(taufci) ! Set up for parameter estimation - ! Pull BETA's to be estimated and corresponding scale values ! and store in WORK(BETACI) and WORK(SSI), respectively call dpack(np, iwork(nppi), work(betaci), beta, ifixb) call dpack(np, iwork(nppi), work(ssi), work(ssfi), ifixb) npp = iwork(nppi) ! Check that WD is positive definite and WE is positive semidefinite, ! saving factorization of WE, and counting number of nonzero weights call dfctrw(n, m, nq, npp, & isodr, & we, ldwe, ld2we, wd, ldwd, ld2wd, & work(wrk2i), work(wrk4i), & work(we1i), nnzw, info) iwork(nnzwi) = nnzw if (info /= 0) then goto 50 end if ! Evaluate the predicted values and weighted EPSILONS at the starting point call dunpac(np, work(betaci), beta, ifixb) work(xplusi:xplusi + (n*m - 1)) = & work(deltai:deltai + (n*m - 1)) + reshape(x(1:n, :), shape=[n*m]) istop = 0 call fcn(n, m, np, nq, & n, m, np, & beta, work(xplusi), & ifixb, ifixx, ldifx, & 002, work(fni), work(wrk6i), work(wrk1i), & istop) iwork(istopi) = istop if (istop == 0) then iwork(nfevi) = iwork(nfevi) + 1 if (implct) then call dcopy(n*nq, work(fni), 1, work(fi), 1) else work(fi:fi + (n*nq - 1)) = & work(fni:fni + (n*nq - 1)) - reshape(y(1:n, :), shape=[n*nq]) end if call dwght(n, nq, & reshape(work(we1i:we1i + ldwe*ld2we*nq - 1), [ldwe, ld2we, nq]), & ldwe, ld2we, & reshape(work(fi:fi + n*nq - 1), [n, nq]), tempret(1:n, 1:nq)) work(fi:fi + n*nq - 1) = reshape(tempret(1:n, 1:nq), [n*nq]) else info = 52000 goto 50 end if ! Compute norm of the initial estimates call dwght(npp, 1, & reshape(work(ssi:ssi + npp - 1), [npp, 1, 1]), & npp, 1, & reshape(work(betaci:betaci + npp - 1), [npp, 1]), tempret(1:npp, 1:1)) work(wrk:wrk + npp - 1) = tempret(1:npp, 1) if (isodr) then call dwght(n, m, & reshape(work(tti:tti + iwork(ldtti)*1*m - 1), [iwork(ldtti), 1, m]), & iwork(ldtti), 1, & reshape(work(deltai:deltai + n*m - 1), [n, m]), tempret(1:n, 1:m)) work(wrk + npp:wrk + npp + n*m - 1) = reshape(tempret(1:n, 1:m), [n*m]) work(pnormi) = dnrm2(npp + n*m, work(wrk), 1) else work(pnormi) = dnrm2(npp, work(wrk), 1) end if ! Compute sum of squares of the weighted EPSILONS and weighted DELTAS work(wssepi) = ddot(n*nq, work(fi), 1, work(fi), 1) if (isodr) then call dwght(n, m, wd, ldwd, ld2wd, & reshape(work(deltai:deltai + n*m), [n, m]), & tempret(1:n, 1:m)) work(wrk:wrk + n*m - 1) = reshape(tempret(1:n, 1:m), [n*m]) work(wssdei) = ddot(n*m, work(deltai), 1, work(wrk), 1) else work(wssdei) = zero end if work(wssi) = work(wssepi) + work(wssdei) ! Select first row of X + DELTA that contains no zeros nrow = -1 call dsetn(n, m, work(xplusi), n, nrow) iwork(nrowi) = nrow ! Set number of good digits in function results epsmac = work(epsmai) if (ndigit < 2) then iwork(netai) = -1 nfev = iwork(nfevi) call detaf(fcn, & n, m, np, nq, & work(xplusi), beta, epsmac, nrow, & work(betani), work(fni), & ifixb, ifixx, ldifx, & istop, nfev, eta, neta, & work(wrk1i), work(wrk2i), work(wrk6i), work(wrk7i), & info, & lower, upper) iwork(istopi) = istop iwork(nfevi) = nfev if (istop /= 0 .or. info /= 0) then if (info == 0) then info = 53000 end if iwork(netai) = 0 work(etai) = zero goto 50 else iwork(netai) = -neta work(etai) = eta end if else iwork(netai) = min(ndigit, int(p5 - log10(epsmac))) work(etai) = max(epsmac, ten**(-ndigit)) end if ! Check bounds are large enough for derivative calculations. if (.not. anajac .or. chkjac) then if (cdjac) then do k = 1, np if (upper(k) - abs(2*derstep(1, k, upper(k), work(ssfi), stpb, neta)) & < lower(k)) then info = 90020 goto 50 end if end do else do k = 1, np if (upper(k) - abs(2*derstep(0, k, upper(k), work(ssfi), stpb, neta)) & < lower(k)) then info = 90020 goto 50 end if end do end if end if ! Check derivatives if necessary if (chkjac .and. anajac) then ntol = -1 nfev = iwork(nfevi) njev = iwork(njevi) neta = iwork(netai) ldtt = iwork(ldtti) eta = work(etai) epsmac = work(epsmai) ! Ensure beta is not too close to bounds for the derivative check betaj(:) = beta(:) call mbfb(np, betaj, lower, upper, work(ssfi), stpb, neta, eta, interval) ! Check the derivatives call djck(fcn, & n, m, np, nq, & beta, betaj, work(xplusi), & ifixb, ifixx, ldifx, stpb, stpd, ldstpd, & work(ssfi), work(tti), ldtt, & eta, neta, ntol, nrow, isodr, epsmac, & work(fni), work(fjacbi), work(fjacdi), & iwork(msgb), iwork(msgd), work(diffi), & istop, nfev, njev, & work(wrk1i), work(wrk2i), work(wrk6i), & interval) iwork(istopi) = istop iwork(nfevi) = nfev iwork(njevi) = njev iwork(ntoli) = ntol if (istop /= 0) then info = 54000 elseif (iwork(msgb) /= 0 .or. iwork(msgd) /= 0) then info = 40000 end if else ! Indicate user supplied derivatives were not checked iwork(msgb) = -1 iwork(msgd) = -1 end if ! Print appropriate error messages 50 if ((info /= 0) .or. & (iwork(msgb) /= -1)) then if (lunerr /= 0 .and. iprint /= 0) then call dodper & (info, lunerr, & n, m, np, nq, & ldscld, ldstpd, ldwe, ld2we, ldwd, ld2wd, & lwkmn, liwkmn, & work(fjacbi), work(fjacdi), & work(diffi), iwork(msgb), isodr, iwork(msgd), & work(xplusi), iwork(nrowi), iwork(netai), iwork(ntoli)) end if ! Set INFO to reflect errors in the user supplied Jacobians if (info == 40000) then if (iwork(msgb) == 2 .or. iwork(msgd) == 2) then if (iwork(msgb) == 2) then info = info + 1000 end if if (iwork(msgd) == 2) then info = info + 100 end if else info = 0 end if end if if (info /= 0) then return end if end if end if ! Save the initial values of BETA call dcopy(np, beta, 1, work(beta0i), 1) ! Find least squares solution call dcopy(n*nq, work(fni), 1, work(fsi), 1) ldtt = iwork(ldtti) call dodmn(head, fstitr, prtpen, & fcn, n, m, np, nq, job, beta, y, ldy, x, ldx, & we, work(we1i), ldwe, ld2we, wd, ldwd, ld2wd, & ifixb, ifixx, ldifx, & work(betaci), work(betani), work(betasi), work(si), & work(deltai), work(deltni), work(deltsi), & work(loweri), work(upperi), & work(ti), work(fi), work(fni), work(fsi), & work(fjacbi), iwork(msgb), work(fjacdi), iwork(msgd), & work(ssfi), work(ssi), work(tti), ldtt, & stpb, stpd, ldstpd, & work(xplusi), work(wrk), lwrk, & work, lwork, tempret, iwork, liwork, info, & iwork(boundi)) maxit1 = iwork(maxiti) - iwork(niteri) tstimp = zero do k = 1, np if (beta(k) == zero) then tstimp = max(tstimp, abs(beta(k) - work(beta0i - 1 + k))/work(ssfi - 1 + k)) else tstimp = max(tstimp, abs(beta(k) - work(beta0i - 1 + k))/abs(beta(k))) end if end do end subroutine doddrv impure subroutine dodmn & (head, fstitr, prtpen, & fcn, n, m, np, nq, job, beta, y, ldy, x, ldx, & we, we1, ldwe, ld2we, wd, ldwd, ld2wd, & ifixb, ifixx, ldifx, & betac, betan, betas, s, delta, deltan, deltas, & lower, upper, & t, f, fn, fs, fjacb, msgb, fjacd, msgd, & ssf, ss, tt, ldtt, stpb, stpd, ldstpd, & xplusd, wrk, lwrk, work, lwork, tempret, iwork, liwork, info, & bound) !! Iteratively compute least squares solution. ! Date Written 860529 (YYMMDD) ! Revision Date 920619 (YYMMDD) use odrpack_kinds, only: zero, one use odrpack_core, only: fcn_t, dacces, devjac, dflags, dunpac, dwght, dpack, dodvcv, & dodlm use odrpack_reports, only: dodpcr use blas_interfaces, only: ddot, dnrm2, dcopy logical, intent(inout) :: head !! The variable designating whether the heading is to be printed (`head = .true.`) !! or not (`head = .false.`). logical, intent(inout) :: fstitr !! The variable designating whether this is the first iteration (`fstitr = .true.`) !! or not (`fstitr = .false.`). logical, intent(inout) :: prtpen !! The value designating whether the penalty parameter is to be printed in the !! iteration report (`prtpen = .true.`) or not (`prtpen = .false.`). procedure(fcn_t) :: fcn !! The user supplied subroutine for evaluating the model. integer, intent(in) :: n !! The number of observations. integer, intent(in) :: m !! The number of columns of data in the explanatory variable. integer, intent(in) :: np !! The number of function parameters. integer, intent(in) :: nq !! The number of responses per observation. integer, intent(inout) :: job !! The variable controlling problem initialization and computational method. real(wp), intent(inout) :: beta(np) !! The function parameters. real(wp), intent(in) :: y(ldy, nq) !! The dependent variable. Unused when the model is implicit. integer, intent(in) :: ldy !! The leading dimension of array `y`. real(wp), intent(in) :: x(ldx, m) !! The explanatory variable. integer, intent(in) :: ldx !! The leading dimension of array `x`. real(wp), intent(in) :: we(ldwe, ld2we, nq) !! The `epsilon` weights. real(wp), intent(in) :: we1(ldwe, ld2we, nq) !! The square root of the `epsilon` weights. integer, intent(in) :: ldwe !! The leading dimension of arrays `we` and `we1`. integer, intent(in) :: ld2we !! The second dimension of arrays `we` and `we1`. real(wp), intent(in) :: wd(ldwd, ld2wd, m) !! The `delta` weights. integer, intent(in) :: ldwd !! The leading dimension of array `wd`. integer, intent(in) :: ld2wd !! The second dimension of array `wd`. integer, intent(in) :: ifixb(np) !! The values designating whether the elements of `beta` are fixed at their input !! values or not. integer, intent(in) :: ifixx(ldifx, m) !! The values designating whether the elements of `x` are fixed at their input !! values or not. integer, intent(in) :: ldifx !! The leading dimension of array `ifixx`. real(wp), intent(inout) :: betac(np) !! The current estimated values of the unfixed `beta`s. real(wp), intent(out) :: betan(np) !! The new estimated values of the unfixed `beta`s. real(wp), intent(inout) :: betas(np) !! The saved estimated values of the unfixed `beta`s. real(wp), intent(out) :: s(np) !! The step for `beta`. real(wp), intent(inout) :: delta(n, m) !! The estimated errors in the explanatory variables. real(wp), intent(out) :: deltan(n, m) !! The new estimated errors in the explanatory variables. real(wp), intent(inout) :: deltas(n, m) !! The saved estimated errors in the explanatory variables. real(wp), intent(in) :: lower(np) !! The lower bound for unfixed `beta`s. real(wp), intent(in) :: upper(np) !! The upper bound for unfixed `beta`s. real(wp), intent(out) :: t(n, m) !! The step for `delta`. real(wp), intent(inout) :: f(n, nq) !! The (weighted) estimated values of `epsilon`. real(wp), intent(out) :: fn(n, nq) !! The new predicted values from the function. real(wp), intent(out) :: fs(n, nq) !! The saved predicted values from the function. real(wp), intent(out) :: fjacb(n, np, nq) !! The Jacobian with respect to `beta`. integer, intent(in) :: msgb(nq*np + 1) !! The error checking results for the Jacobian with respect to `beta`. real(wp), intent(out) :: fjacd(n, m, nq) !! The Jacobian with respect to `delta`. integer, intent(in) :: msgd(nq*m + 1) !! The error checking results for the Jacobian with respect to `delta`. real(wp), intent(in) :: ssf(np) !! The scaling values used for `beta`. real(wp), intent(in) :: ss(np) !! The scaling values used for the unfixed `beta`s. real(wp), intent(in) :: tt(ldtt, m) !! The scaling values used for `delta`. integer, intent(in) :: ldtt !! The leading dimension of array `tt`. real(wp), intent(in) :: stpb(np) !! The relative step used for computing finite difference derivatives with respect !! to each `beta`. real(wp), intent(in) :: stpd(ldstpd, m) !! The relative step used for computing finite difference derivatives with respect !! to `delta`. integer, intent(in) :: ldstpd !! The leading dimension of array `stpd`. real(wp), intent(out) :: xplusd(n, m) !! The values of `x + delta`. real(wp), intent(inout) :: wrk(lwrk) !! A work array, _equivalenced_ to `wrk1` and `wrk2`. integer, intent(in) :: lwrk !! The length of vector `wrk`. real(wp), intent(inout) :: work(lwork) !! The real (wp) workspace. integer, intent(in) :: lwork !! The length of vector `work`. real(wp), intent(inout) :: tempret(:, :) !! Temporary work array for holding return values before copying to a lower rank array. integer, intent(inout) :: iwork(liwork) !! The integer workspace. integer, intent(in) :: liwork !! The length of vector `iwork`. integer, intent(inout) :: info !! The variable designating why the computations were stopped. integer, intent(out) :: bound(np) !! The values of the bounds for `beta`. ! Local scalars real(wp), parameter :: p0001 = 0.00010_wp, & p1 = 0.1_wp, & p25 = 0.25_wp, & p5 = 0.5_wp, & p75 = 0.75_wp real(wp) :: actred, actrs, alpha, dirder, eta, olmavg, partol, pnorm, prered, & prers, ratio, rcond, rnorm, rnormn, rnorms, rss, rvar, sstol, tau, & taufac, temp, temp1, temp2, tsnorm integer, parameter :: ludflt = 6 integer :: i, idf, iflag, int2, ipr, ipr1, ipr2, ipr2f, ipr3, irank, istop, istopc, & iwrk, j, jpvt, l, looped, lunr, lunrpt, maxit, neta, nfev, niter, njev, & nlms, nnzw, npp, npr, npu, omega, qraux, sd, u, vcv, wrk1, wrk2, wrk3, & wrk4, wrk5, wrk6 logical :: access, anajac, cdjac, chkjac, cnvpar, cnvss, didvcv, dovcv, implct, initd, & intdbl, isodr, lstep, redoj, restrt ! Local arrays real(wp) :: loweru(np), upperu(np), wss(3) ! Variable Definitions (alphabetically) ! ACCESS: The variable designating whether information is to be accessed from the work ! arrays (ACCESS=TRUE) or stored in them (ACCESS=FALSE). ! ACTRED: The actual relative reduction in the sum-of-squares. ! ACTRS: The saved actual relative reduction in the sum-of-squares. ! ALPHA: The Levenberg-Marquardt parameter. ! ANAJAC: The variable designating whether the Jacobians are computed by finite ! differences (ANAJAC=FALSE) or not (ANAJAC=TRUE). ! BETA: The function parameters. ! BETAC: The current estimated values of the unfixed BETA'S. ! BETAN: The new estimated values of the unfixed BETA'S. ! BETAS: The saved estimated values of the unfixed BETA'S. ! CDJAC: The variable designating whether the Jacobians are computed by central ! differences (cdjac=true) or by forward differences (CDJAC=FALSE). ! CHKJAC: The variable designating whether the user supplied Jacobians are to be ! checked (CHKJAC=TRUE) or not (CHKJAC=FALSE). ! CNVPAR: The variable designating whether parameter convergence was attained ! (CNVPAR=TRUE) or not (CNVPAR=FALSE). ! CNVSS: The variable designating whether sum-of-squares convergence was attained ! (CNVSS=TRUE) or not (CNVSS=FALSE). ! DELTA: The estimated errors in the explanatory variables. ! DELTAN: The new estimated errors in the explanatory variables. ! DELTAS: The saved estimated errors in the explanatory variables. ! DIDVCV: The variable designating whether the covariance matrix was computed ! (DIDVCV=TRUE) or not (DIDVCV=FALSE). ! DIRDER: The directional derivative. ! DOVCV: The variable designating whether the covariance matrix should to be ! computed (DOVCV=TRUE) or not (DOVCV=FALSE). ! ETA: The relative noise in the function results. ! F: The (weighted) estimated values of EPSILON. ! FCN: The user supplied subroutine for evaluating the model. ! FJACB: The Jacobian with respect to BETA. ! FJACD: The Jacobian with respect to DELTA. ! FN: The new predicted values from the function. ! FS: The saved predicted values from the function. ! FSTITR: The variable designating whether this is the first iteration (FSTITR=TRUE) ! or not (FSTITR=FALSE). ! HEAD: The variable designating whether the heading is to be printed (HEAD=TRUE) or ! not (HEAD=FALSE). ! I: An indexing variable. ! IDF: The degrees of freedom of the fit, equal to the number of observations with ! nonzero weighted derivatives minus the number of parameters being estimated. ! IFIXB: The values designating whether the elements of BETA are fixed at their input ! values or not. ! IFIXX: The values designating whether the elements of X are fixed at their input ! values or not. ! IFLAG: The variable designating which report is to be printed. ! IMPLCT: The variable designating whether the solution is by implicit ODR (IMPLCT=TRUE) ! or explicit ODR (IMPLCT=FALSE). ! INFO: The variable designating why the computations were stopped. ! INITD: The variable designating whether delta is initialized to zero (INITD=TRUE) or ! to the values in the first N by M elements of array work (INITD=FALSE). ! INT2: The number of internal doubling steps taken. ! INTDBL: The variable designating whether internal doubling is to be used (INTDBL=TRUE) ! or NOT (INTDBL=FALSE). ! IPR: The values designating the length of the printed report. ! IPR1: The value of the 4th digit (from the right) of iprint, which controls the ! initial summary report. ! IPR2: The value of the 3rd digit (from the right) of iprint, which controls the ! final iteration report. ! IPR2F: The value of the 2nd digit (from the right) of iprint, which controls the ! frequency of the iteration reports. ! IPR3: The value of the 1st digit (from the right) of iprint, which controls the final ! summary report. ! IRANK: The rank deficiency of the Jacobian wrt BETA. ! ISODR: The variable designating whether the solution is by ODR (ISODR=TRUE) or ! OLS (ISODR=FALSE). ! ISTOP: The variable designating whether there are problems computing the function ! at the current BETA and DELTA. ! ISTOPC: The variable designating whether the computations were stoped due to some ! numerical error within routine DODSTP. ! IWORK: The integer work space. ! IWRK: An index variable. ! J: An index variable. ! JOB: The variable controling problem initialization and computational method. ! JPVT: The starting location in IWORK of array JPVT. ! L: An index variable. ! LDIFX: The leading dimension of array IFIXX. ! LDTT: The leading dimension of array TT. ! LDWD: The leading dimension of array WD. ! LDWE: The leading dimension of array WE and WE1. ! LDX: The leading dimension of array X. ! LDY: The leading dimension of array Y. ! LD2WD: The second dimension of array WD. ! LD2WE: The second dimension of array WE and WE1. ! LIWORK: The length of vector IWORK. ! LOOPED: A counter used to determine how many times the subloop has been executed, ! where if the count becomes large enough the computations will be stopped. ! LOWERU: The lower bound for unfixed BETAs. ! LSTEP: The variable designating whether a successful step has been found (LSTEP=TRUE) ! or not (LSTEP=FALSE). ! LUDFLT: The default logical unit number, used for computation reports to the screen. ! LUNR: The logical unit number used for computation reports. ! LUNRPT: The logical unit number used for computation reports. ! LWORK: The length of vector WORK. ! LWRK: The length of vector WRK. ! M: The number of columns of data in the explanatory variable. ! MAXIT: The maximum number of iterations allowed. ! MSGB: The error checking results for the Jacobian wrt BETA. ! MSGD: The error checking results for the Jacobian wrt DELTA. ! N: The number of observations. ! NETA: The number of accurate digits in the function results. ! NFEV: The number of function evaluations. ! NITER: The number of iterations taken. ! NJEV: The number of Jacobian evaluations. ! NLMS: The number of Levenberg-Marquardt steps taken. ! NNZW: The number of nonzero weighted observations. ! NP: The number of function parameters. ! NPP: The number of function parameters being estimated. ! NPR: The number of times the report is to be written. ! NPU: The number of unfixed parameters. ! NQ: The number of responses per observation. ! OLMAVG: The average number of Levenberg-Marquardt steps per iteration. ! OMEGA: The starting location in WORK of array OMEGA. ! PARTOL: The parameter convergence stopping tolerance. ! PNORM: The norm of the scaled estimated parameters. ! PRERED: The predicted relative reduction in the sum-of-squares. ! PRERS: The old predicted relative reduction in the sum-of-squares. ! PRTPEN: The value designating whether the penalty parameter is to be printed in the ! iteration report (PRTPEN=TRUE) or not (PRTPEN=FALSE). ! QRAUX: The starting location in array WORK of array QRAUX. ! RATIO: The ratio of the actual relative reduction to the predicted relative reduction ! in the sum-of-squares. ! RCOND: The approximate reciprocal condition of FJACB. ! REDOJ: The variable designating whether the Jacobian matrix is to be recomputed for ! the computation of the covariance matrix (REDOJ=TRUE) or not (REDOJ=FALSE). ! RESTRT: The variable designating whether the call is a restart (RESTRT=TRUE) or ! not (RESTRT=FALSE). ! RNORM: The norm of the weighted errors. ! RNORMN: The new norm of the weighted errors. ! RNORMS: The saved norm of the weighted errors. ! RSS: The residual sum of squares. ! RVAR: The residual variance. ! S: The step for BETA. ! SD: The starting location in array work of array SD. ! SS: The scaling values used for the unfixed BETAS. ! SSF: The scaling values used for BETA. ! SSTOL: The sum-of-squares convergence stopping tolerance. ! STPB: The relative step used for computing finite difference derivatives with ! respect to each BETA. ! STPD: The relative step used for computing finite difference derivatives with respect ! to DELTA. ! T: The step for DELTA. ! TAU: The trust region diameter. ! TAUFAC: The factor used to compute the initial trust region diameter. ! TEMP: A temporary storage location. ! TEMP1: A temporary storage location. ! TEMP2: A temporary storage location. ! TSNORM: The norm of the scaled step. ! TT: The scaling values used for DELTA. ! U: The starting location in array WORK of array U. ! UPPERU: The upper bound for unfixed BETAs. ! VCV: The starting location in array WORK of array VCV. ! WE: The EPSILON weights. ! WE1: The square root of the EPSILON weights. ! WD: The DELTA weights. ! WORK: The REAL (wp) work space. ! WSS: The sum-of-squares of the weighted EPSILONS and DELTAS, the sum-of-squares ! of the weighted DELTAS, and the sum-of-squares of the weighted EPSILONS. ! WRK: A work array, equivalenced to WRK1 and WRK2 ! WRK1: The starting location in array WORK of array WRK1. ! WRK2: The starting location in array WORK of array WRK2. ! WRK3: The starting location in array WORK of array WRK3. ! WRK4: The starting location in array WORK of array WRK4. ! WRK5: The starting location in array WORK of array WRK5. ! WRK6: The starting location in array WORK of array WRK6. ! X: The explanatory variable. ! XPLUSD: The values of X + DELTA. ! Y: The dependent variable. Unused when the model is implicit. ! Initialize necessary variables call dpack(np, npu, loweru, lower, ifixb) call dpack(np, npu, upperu, upper, ifixb) call dflags(job, restrt, initd, dovcv, redoj, & anajac, cdjac, chkjac, isodr, implct) access = .true. call dacces(n, m, np, nq, ldwe, ld2we, & work, lwork, iwork, liwork, & access, isodr, & jpvt, omega, u, qraux, sd, vcv, & wrk1, wrk2, wrk3, wrk4, wrk5, wrk6, & nnzw, npp, & job, partol, sstol, maxit, taufac, eta, neta, & lunrpt, ipr1, ipr2, ipr2f, ipr3, & wss, rvar, idf, & tau, alpha, niter, nfev, njev, int2, olmavg, & rcond, irank, actrs, pnorm, prers, rnorms, istop) rnorm = sqrt(wss(1)) didvcv = .false. intdbl = .false. lstep = .true. ! Print initial summary if desired if (ipr1 /= 0 .and. lunrpt /= 0) then iflag = 1 if (ipr1 >= 3 .and. lunrpt /= ludflt) then npr = 2 else npr = 1 end if if (ipr1 >= 6) then ipr = 2 else ipr = 2 - mod(ipr1, 2) end if lunr = lunrpt do i = 1, npr call dodpcr(ipr, lunr, & head, prtpen, fstitr, didvcv, iflag, & n, m, np, nq, npp, nnzw, & msgb, msgd, beta, y, ldy, x, ldx, delta, & we, ldwe, ld2we, wd, ldwd, ld2wd, & ifixb, ifixx, ldifx, & lower, upper, & ssf, tt, ldtt, stpb, stpd, ldstpd, & job, neta, taufac, sstol, partol, maxit, & wss, rvar, idf, work(sd), & niter, nfev, njev, actred, prered, & tau, pnorm, alpha, f, rcond, irank, info, istop) if (ipr1 >= 5) then ipr = 2 else ipr = 1 end if lunr = ludflt end do end if ! Stop if initial estimates are exact solution if (rnorm == zero) then info = 1 olmavg = zero istop = 0 goto 150 end if ! Stop if number of iterations already equals maximum permitted if (restrt .and. & (niter >= maxit)) then istop = 0 goto 150 elseif (niter >= maxit) then info = 4 istop = 0 goto 150 end if ! MAIN LOOP 100 continue niter = niter + 1 rnorms = rnorm looped = 0 ! Evaluate jacobian using best estimate of function (FS) if ((niter == 1) .and. & (anajac .and. chkjac)) then istop = 0 else call devjac(fcn, & anajac, cdjac, & n, m, np, nq, & betac, beta, stpb, & ifixb, ifixx, ldifx, & x, ldx, delta, xplusd, stpd, ldstpd, & ssf, tt, ldtt, neta, fs, & t, work(wrk1), work(wrk2), work(wrk3), work(wrk6), tempret, & fjacb, isodr, fjacd, we1, ldwe, ld2we, & njev, nfev, istop, info, & lower, upper) end if if (istop /= 0) then info = 51000 goto 200 elseif (info == 50300) then goto 200 end if ! SUB-LOOP for internal doubling or computing new step when old failed 110 continue ! Compute steps S and T if (looped > 100) then info = 60000 goto 200 else looped = looped + 1 call dodlm(n, m, np, nq, npp, & f, fjacb, fjacd, & wd, ldwd, ld2wd, ss, tt, ldtt, delta, & alpha, tau, eta, isodr, & work(wrk6), work(omega), & work(u), work(qraux), iwork(jpvt), & s, t, nlms, rcond, irank, & work(wrk1), work(wrk2), work(wrk3), work(wrk4), & work(wrk5), wrk, lwrk, tempret, istopc) end if if (istopc /= 0) then info = istopc goto 200 end if olmavg = olmavg + nlms ! Compute BETAN = BETAC + S ! DELTAN = DELTA + T betan = betac + s if (isodr) deltan = delta + t ! Project the step wrt the bounds do i = 1, npu if (loweru(i) == upperu(i)) then betan(i) = upperu(i) s(i) = upperu(i) - betac(i) bound(i) = 3 elseif (betan(i) <= loweru(i)) then betan(i) = loweru(i) s(i) = loweru(i) - betac(i) bound(i) = 2 elseif (betan(i) >= upperu(i)) then betan(i) = upperu(i) s(i) = upperu(i) - betac(i) bound(i) = 1 else bound(i) = 0 end if end do ! Compute norm of scaled steps S and T (TSNORM) call dwght(npp, 1, reshape(ss, [npp, 1, 1]), npp, 1, & reshape(s, [npp, 1]), tempret(1:npp, 1:1)) wrk(1:npp) = tempret(1:npp, 1) if (isodr) then call dwght(n, m, reshape(tt, [ldtt, 1, m]), ldtt, 1, t, tempret(1:n, 1:m)) wrk(npp + 1:npp + 1 + n*m - 1) = reshape(tempret(1:n, 1:m), [n*m]) tsnorm = dnrm2(npp + n*m, wrk, 1) else tsnorm = dnrm2(npp, wrk, 1) end if ! Compute scaled predicted reduction iwrk = 0 do l = 1, nq do i = 1, n iwrk = iwrk + 1 wrk(iwrk) = ddot(npp, fjacb(i, 1, l), n, s, 1) if (isodr) wrk(iwrk) = wrk(iwrk) + ddot(m, fjacd(i, 1, l), n, t(i, 1), n) end do end do if (isodr) then call dwght(n, m, wd, ldwd, ld2wd, t, tempret(1:n, 1:m)) wrk(n*nq + 1:n*nq + 1 + n*m - 1) = reshape(tempret(1:n, 1:m), [n*m]) temp1 = ddot(n*nq, wrk, 1, wrk, 1) + ddot(n*m, t, 1, wrk(n*nq + 1), 1) temp1 = sqrt(temp1)/rnorm else temp1 = dnrm2(n*nq, wrk, 1)/rnorm end if temp2 = sqrt(alpha)*tsnorm/rnorm prered = temp1**2 + temp2**2/p5 dirder = -(temp1**2 + temp2**2) ! Evaluate predicted values at new point call dunpac(np, betan, beta, ifixb) xplusd = x(1:n, :) + deltan istop = 0 call fcn(n, m, np, nq, & n, m, np, & beta, xplusd, & ifixb, ifixx, ldifx, & 002, fn, work(wrk6), work(wrk1), & istop) if (istop == 0) then nfev = nfev + 1 end if if (istop < 0) then ! Set INFO to indicate user has stopped the computations in FCN info = 51000 goto 200 elseif (istop > 0) then ! Set norm to indicate step should be rejected rnormn = rnorm/(p1*p75) else ! Compute norm of new weighted EPSILONS and weighted DELTAS (RNORMN) if (implct) then call dcopy(n*nq, fn, 1, wrk, 1) else !call dxmy( n, nq, fn, n, y, ldy, wrk, n) wrk(1:n*nq) = reshape(fn - y(1:n, :), [n*nq]) end if call dwght(n, nq, we1, ldwe, ld2we, reshape(wrk, [n, nq]), & tempret(1:n, 1:nq)) wrk(1:n*nq) = reshape(tempret(1:n, 1:nq), [n*nq]) if (isodr) then call dwght(n, m, wd, ldwd, ld2wd, deltan, tempret(1:n, 1:m)) wrk(n*nq + 1:n*nq + 1 + n*m - 1) = reshape(tempret(1:n, 1:m), [n*m]) rnormn = sqrt(ddot(n*nq, wrk, 1, wrk, 1) + & ddot(n*m, deltan, 1, wrk(n*nq + 1), 1)) else rnormn = dnrm2(n*nq, wrk, 1) end if end if ! Compute scaled actual reduction if (p1*rnormn < rnorm) then actred = one - (rnormn/rnorm)**2 else actred = -one end if ! Compute ratio of actual reduction to predicted reduction if (prered == zero) then ratio = zero else ratio = actred/prered end if ! Check on lack of reduction in internal doubling case if (intdbl .and. (ratio < p0001 .or. rnormn > rnorms)) then istop = 0 tau = tau*p5 alpha = alpha/p5 call dcopy(npp, betas, 1, betan, 1) call dcopy(n*m, deltas, 1, deltan, 1) call dcopy(n*nq, fs, 1, fn, 1) actred = actrs prered = prers rnormn = rnorms ratio = p5 end if ! Update step bound intdbl = .false. if (ratio < p25) then if (actred >= zero) then temp = p5 else temp = p5*dirder/(dirder + p5*actred) end if if (p1*rnormn >= rnorm .or. temp < p1) then temp = p1 end if tau = temp*min(tau, tsnorm/p1) alpha = alpha/temp elseif (alpha == zero) then tau = tsnorm/p5 elseif (ratio >= p75 .and. nlms <= 11) then ! Step qualifies for internal doubling ! - Update TAU and ALPHA ! - Save information for current point intdbl = .true. tau = tsnorm/p5 alpha = alpha*p5 call dcopy(npp, betan, 1, betas, 1) call dcopy(n*m, deltan, 1, deltas, 1) call dcopy(n*nq, fn, 1, fs, 1) actrs = actred prers = prered rnorms = rnormn end if ! If internal doubling, skip convergence checks if (intdbl .and. tau > zero) then int2 = int2 + 1 goto 110 end if ! Check acceptance if (ratio >= p0001) then call dcopy(n*nq, fn, 1, fs, 1) if (implct) then call dcopy(n*nq, fs, 1, f, 1) else !call dxmy( n, nq, fs, n, y, ldy, f, n) f = fs - y(1:n, :) end if call dwght(n, nq, we1, ldwe, ld2we, f, tempret(1:n, 1:nq)) f(1:n, 1:nq) = tempret(1:n, 1:nq) call dcopy(npp, betan, 1, betac, 1) call dcopy(n*m, deltan, 1, delta, 1) rnorm = rnormn call dwght(npp, 1, reshape(ss, [npp, 1, 1]), npp, 1, & reshape(betac, [npp, 1]), tempret(1:npp, 1:1)) wrk(1:npp) = tempret(1:npp, 1) if (isodr) then call dwght(n, m, reshape(tt, [ldtt, 1, m]), ldtt, 1, delta, tempret(1:n, 1:m)) wrk(npp + 1:npp + 1 + n*m - 1) = reshape(tempret(1:n, 1:m), [n*m]) pnorm = dnrm2(npp + n*m, wrk, 1) else pnorm = dnrm2(npp, wrk, 1) end if lstep = .true. else lstep = .false. end if ! Test convergence info = 0 cnvss = rnorm == zero & .or. & (abs(actred) <= sstol .and. & prered <= sstol .and. & p5*ratio <= one) cnvpar = (tau <= partol*pnorm) .and. (.not. implct) if (cnvss) info = 1 if (cnvpar) info = 2 if (cnvss .and. cnvpar) info = 3 ! Print iteration report if (info /= 0 .or. lstep) then if (ipr2 /= 0 .and. ipr2f /= 0 .and. lunrpt /= 0) then if (ipr2f == 1 .or. mod(niter, ipr2f) == 1) then iflag = 2 call dunpac(np, betac, beta, ifixb) wss(1) = rnorm*rnorm if (ipr2 >= 3 .and. lunrpt /= ludflt) then npr = 2 else npr = 1 end if if (ipr2 >= 6) then ipr = 2 else ipr = 2 - mod(ipr2, 2) end if lunr = lunrpt do i = 1, npr call dodpcr(ipr, lunr, & head, prtpen, fstitr, didvcv, iflag, & n, m, np, nq, npp, nnzw, & msgb, msgd, beta, y, ldy, x, ldx, delta, & we, ldwe, ld2we, wd, ldwd, ld2wd, & ifixb, ifixx, ldifx, & lower, upper, & ssf, tt, ldtt, stpb, stpd, ldstpd, & job, neta, taufac, sstol, partol, maxit, & wss, rvar, idf, work(sd), & niter, nfev, njev, actred, prered, & tau, pnorm, alpha, f, rcond, irank, info, istop) if (ipr2 >= 5) then ipr = 2 else ipr = 1 end if lunr = ludflt end do fstitr = .false. prtpen = .false. end if end if end if ! Check if finished if (info == 0) then if (lstep) then ! Begin next interation unless a stopping criteria has been met if (niter >= maxit) then info = 4 else goto 100 end if else ! Step failed - recompute unless a stopping criteria has been met goto 110 end if end if 150 continue if (istop > 0) info = info + 100 ! Store unweighted EPSILONS and X+DELTA to return to user if (implct) then call dcopy(n*nq, fs, 1, f, 1) else !call dxmy( n, nq, fs, n, y, ldy, f, n) f = fs - y(1:n, :) end if call dunpac(np, betac, beta, ifixb) xplusd = x(1:n, :) + delta ! Compute covariance matrix of estimated parameters in upper NP by NP portion ! of WORK(VCV) if requested if (dovcv .and. istop == 0) then ! Re-evaluate Jacobian at final solution, if requested ! Otherwise, Jacobian from beginning of last iteration will be used ! to compute covariance matrix if (redoj) then call devjac(fcn, & anajac, cdjac, & n, m, np, nq, & betac, beta, stpb, & ifixb, ifixx, ldifx, & x, ldx, delta, xplusd, stpd, ldstpd, & ssf, tt, ldtt, neta, fs, & t, work(wrk1), work(wrk2), work(wrk3), work(wrk6), tempret, & fjacb, isodr, fjacd, we1, ldwe, ld2we, & njev, nfev, istop, info, & lower, upper) if (istop /= 0) then info = 51000 goto 200 elseif (info == 50300) then goto 200 end if end if if (implct) then call dwght(n, m, wd, ldwd, ld2wd, delta, tempret(1:n, 1:m)) wrk(n*nq + 1:n*nq + 1 + n*m - 1) = reshape(tempret(1:n, 1:m), [n*m]) rss = ddot(n*m, delta, 1, wrk(n*nq + 1), 1) else rss = rnorm*rnorm end if if (redoj .or. niter >= 1) then call dodvcv(n, m, np, nq, npp, & f, fjacb, fjacd, & wd, ldwd, ld2wd, ssf, ss, tt, ldtt, delta, & eta, isodr, & work(vcv), work(sd), & work(wrk6), work(omega), & work(u), work(qraux), iwork(jpvt), & s, t, irank, rcond, rss, idf, rvar, ifixb, & work(wrk1), work(wrk2), work(wrk3), work(wrk4), & work(wrk5), wrk, lwrk, tempret, istopc) if (istopc /= 0) then info = istopc goto 200 end if didvcv = .true. end if end if ! Set JPVT to indicate dropped, fixed and estimated parameters 200 do i = 0, np - 1 work(wrk3 + i) = iwork(jpvt + i) iwork(jpvt + i) = -2 end do if (redoj .or. niter >= 1) then do i = 0, npp - 1 j = int(work(wrk3 + i)) - 1 if (i <= npp - irank - 1) then iwork(jpvt + j) = 1 else iwork(jpvt + j) = -1 end if end do if (npp < np) then j = npp - 1 do i = np - 1, 0, -1 if (ifixb(i + 1) == 0) then iwork(jpvt + i) = 0 else iwork(jpvt + i) = iwork(jpvt + j) j = j - 1 end if end do end if end if ! Store various scalars in work arrays for return to user if (niter >= 1) then olmavg = olmavg/niter else olmavg = zero end if ! Compute weighted sums of squares for return to user call dwght(n, nq, we1, ldwe, ld2we, f, tempret(1:n, 1:nq)) wrk(1:n*nq) = reshape(tempret(1:n, 1:nq), [n*nq]) wss(3) = ddot(n*nq, wrk, 1, wrk, 1) if (isodr) then call dwght(n, m, wd, ldwd, ld2wd, delta, tempret(1:n, 1:m)) wrk(n*nq + 1:n*nq + 1 + n*m - 1) = reshape(tempret(1:n, 1:m), [n*m]) wss(2) = ddot(n*m, delta, 1, wrk(n*nq + 1), 1) else wss(2) = zero end if wss(1) = wss(2) + wss(3) access = .false. call dacces(n, m, np, nq, ldwe, ld2we, & work, lwork, iwork, liwork, & access, isodr, & jpvt, omega, u, qraux, sd, vcv, & wrk1, wrk2, wrk3, wrk4, wrk5, wrk6, & nnzw, npp, & job, partol, sstol, maxit, taufac, eta, neta, & lunrpt, ipr1, ipr2, ipr2f, ipr3, & wss, rvar, idf, & tau, alpha, niter, nfev, njev, int2, olmavg, & rcond, irank, actrs, pnorm, prers, rnorms, istop) ! Encode existance of questionable results into info if (info <= 9 .or. info >= 60000) then if (msgb(1) == 1 .or. msgd(1) == 1) then info = info + 1000 end if if (istop /= 0) then info = info + 100 end if if (irank >= 1) then if (npp > irank) then info = info + 10 else info = info + 20 end if end if end if ! Print final summary if (ipr3 /= 0 .and. lunrpt /= 0) then iflag = 3 if (ipr3 >= 3 .and. lunrpt /= ludflt) then npr = 2 else npr = 1 end if if (ipr3 >= 6) then ipr = 2 else ipr = 2 - mod(ipr3, 2) end if lunr = lunrpt do i = 1, npr call dodpcr(ipr, lunr, & head, prtpen, fstitr, didvcv, iflag, & n, m, np, nq, npp, nnzw, & msgb, msgd, beta, y, ldy, x, ldx, delta, & we, ldwe, ld2we, wd, ldwd, ld2wd, & iwork(jpvt), ifixx, ldifx, & lower, upper, & ssf, tt, ldtt, stpb, stpd, ldstpd, & job, neta, taufac, sstol, partol, maxit, & wss, rvar, idf, work(sd), & niter, nfev, njev, actred, prered, & tau, pnorm, alpha, f, rcond, irank, info, istop) if (ipr3 >= 5) then ipr = 2 else ipr = 1 end if lunr = ludflt end do end if end subroutine dodmn pure subroutine workspace_dimensions(n, m, np, nq, isodr, lwork, liwork) !! Calculate the dimensions of the workspace arrays. integer, intent(in) :: n !! Number of observations. integer, intent(in) :: m !! Number of columns of data in the independent variable. integer, intent(in) :: np !! Number of function parameters. integer, intent(in) :: nq !! Number of responses per observation. logical, intent(in) :: isodr !! The variable designating whether the solution is by ODR (`isodr = .true.`) !! or by OLS (`isodr = .false.`). integer, intent(out) :: lwork !! Length of `work` array. integer, intent(out) :: liwork !! Length of `iwork` array. if (isodr) then lwork = 18 + 13*np + np**2 + m + m**2 + 4*n*nq + 6*n*m + 2*n*nq*np + & 2*n*nq*m + nq**2 + 5*nq + nq*(np + m) + n*nq*nq else lwork = 18 + 13*np + np**2 + m + m**2 + 4*n*nq + 2*n*m + 2*n*nq*np + & 5*nq + nq*(np + m) + n*nq*nq end if liwork = 20 + 2*np + nq*(np + m) end subroutine workspace_dimensions end module odrpack