Compute covariance matrix of estimated parameters.
Type | Intent | Optional | Attributes | Name | ||
---|---|---|---|---|---|---|
integer, | intent(in) | :: | n |
Number of observations. |
||
integer, | intent(in) | :: | m |
Number of columns of data in the explanatory variable. |
||
integer, | intent(in) | :: | np |
Number of function parameters. |
||
integer, | intent(in) | :: | q |
Number of responses per observation. |
||
integer, | intent(in) | :: | npp |
Number of function parameters being estimated. |
||
real(kind=wp), | intent(in) | :: | f(n,q) |
Weighted estimated values of |
||
real(kind=wp), | intent(in) | :: | fjacb(n,np,q) |
Jacobian with respect to |
||
real(kind=wp), | intent(in) | :: | fjacd(n,m,q) |
Jacobian with respect to |
||
real(kind=wp), | intent(in) | :: | wd(ldwd,ld2wd,m) |
|
||
integer, | intent(in) | :: | ldwd |
Leading dimension of array |
||
integer, | intent(in) | :: | ld2wd |
Second dimension of array |
||
real(kind=wp), | intent(in) | :: | ssf(np) |
Scaling values used for |
||
real(kind=wp), | intent(in) | :: | ss(np) |
Scaling values for the unfixed |
||
real(kind=wp), | intent(in) | :: | tt(ldtt,m) |
Scaling values for |
||
integer, | intent(in) | :: | ldtt |
Leading dimension of array |
||
real(kind=wp), | intent(in) | :: | delta(n,m) |
Estimated errors in the explanatory variables. |
||
real(kind=wp), | intent(in) | :: | epsfcn |
Function's precision. |
||
logical, | intent(in) | :: | isodr |
Variable designating whether the solution is by ODR ( |
||
real(kind=wp), | intent(out) | :: | vcv(np,np) |
Covariance matrix of the estimated |
||
real(kind=wp), | intent(out) | :: | sd(np) |
Standard deviations of the estimated |
||
real(kind=wp), | intent(out) | :: | wrk6(n*q,np) |
A work array of |
||
real(kind=wp), | intent(out) | :: | omega(q,q) |
Array defined such that |
||
real(kind=wp), | intent(out) | :: | u(np) |
Approximate null vector for |
||
real(kind=wp), | intent(out) | :: | qraux(np) |
Array required to recover the orthogonal part of the Q-R decomposition. |
||
integer, | intent(out) | :: | jpvt(np) |
Pivot vector. |
||
real(kind=wp), | intent(out) | :: | s(np) |
Step for |
||
real(kind=wp), | intent(out) | :: | t(n,m) |
Step for |
||
integer, | intent(out) | :: | irank |
Rank deficiency of the Jacobian wrt |
||
real(kind=wp), | intent(out) | :: | rcond |
Approximate reciprocal condition of |
||
real(kind=wp), | intent(inout) | :: | rss |
Residual sum of squares. |
||
integer, | intent(out) | :: | idf |
Degrees of freedom of the fit, equal to the number of observations with nonzero weighted derivatives minus the number of parameters being estimated. |
||
real(kind=wp), | intent(out) | :: | rvar |
Residual variance. |
||
integer, | intent(in) | :: | ifixb(np) |
Values designating whether the elements of |
||
real(kind=wp), | intent(out) | :: | wrk1(n,q,m) |
A work array of |
||
real(kind=wp), | intent(out) | :: | wrk2(n,q) |
A work array of |
||
real(kind=wp), | intent(out) | :: | wrk3(np) |
A work array of |
||
real(kind=wp), | intent(out) | :: | wrk4(m,m) |
A work array of |
||
real(kind=wp), | intent(out) | :: | wrk5(m) |
A work array of |
||
real(kind=wp), | intent(out) | :: | wrk(lwrk) |
A work array of |
||
integer, | intent(in) | :: | lwrk |
Length of vector |
||
integer, | intent(out) | :: | istopc |
Variable designating whether the computations were stoped due to a numerical
error within subroutine |
Type | Visibility | Attributes | Name | Initial | |||
---|---|---|---|---|---|---|---|
real(kind=wp), | public | :: | temp | ||||
integer, | public | :: | i | ||||
integer, | public | :: | iunfix | ||||
integer, | public | :: | j | ||||
integer, | public | :: | junfix | ||||
integer, | public | :: | kp | ||||
logical, | public | :: | forvcv |
subroutine vcv_beta & (n, m, np, q, npp, & f, fjacb, fjacd, & wd, ldwd, ld2wd, ssf, ss, tt, ldtt, delta, & epsfcn, isodr, & vcv, sd, & wrk6, omega, u, qraux, jpvt, & s, t, irank, rcond, rss, idf, rvar, ifixb, & wrk1, wrk2, wrk3, wrk4, wrk5, wrk, lwrk, istopc) !! Compute covariance matrix of estimated parameters. use odrpack_kinds, only: zero use linpack, only: dpodi integer, intent(in) :: n !! Number of observations. integer, intent(in) :: m !! Number of columns of data in the explanatory variable. integer, intent(in) :: np !! Number of function parameters. integer, intent(in) :: q !! Number of responses per observation. integer, intent(in) :: npp !! Number of function parameters being estimated. real(wp), intent(in) :: f(n, q) !! Weighted estimated values of `epsilon`. real(wp), intent(in) :: fjacb(n, np, q) !! Jacobian with respect to `beta`. real(wp), intent(in) :: fjacd(n, m, q) !! Jacobian with respect to `delta`. real(wp), intent(in) :: wd(ldwd, ld2wd, m) !! `delta` weights. integer, intent(in) :: ldwd !! Leading dimension of array `wd`. integer, intent(in) :: ld2wd !! Second dimension of array `wd`. real(wp), intent(in) :: ssf(np) !! Scaling values used for `beta`. real(wp), intent(in) :: ss(np) !! Scaling values for the unfixed `beta`s. real(wp), intent(in) :: tt(ldtt, m) !! Scaling values for `delta`. integer, intent(in) :: ldtt !! Leading dimension of array `tt`. real(wp), intent(in) :: delta(n, m) !! Estimated errors in the explanatory variables. real(wp), intent(in) :: epsfcn !! Function's precision. logical, intent(in) :: isodr !! Variable designating whether the solution is by ODR (`.true.`) or by OLS (`.false.`). real(wp), intent(out) :: vcv(np, np) !! Covariance matrix of the estimated `beta`s. real(wp), intent(out) :: sd(np) !! Standard deviations of the estimated `beta`s. real(wp), intent(out) :: wrk6(n*q, np) !! A work array of `(n*q, np)` elements. real(wp), intent(out) :: omega(q, q) !! Array defined such that `omega*trans(omega) = inv(I + fjacd*inv(e)*trans(fjacd)) !! = (I - fjacd*inv(p)*trans(fjacd))`. real(wp), intent(out) :: u(np) !! Approximate null vector for `fjacb`. real(wp), intent(out) :: qraux(np) !! Array required to recover the orthogonal part of the Q-R decomposition. integer, intent(out) :: jpvt(np) !! Pivot vector. real(wp), intent(out) :: s(np) !! Step for `beta`. real(wp), intent(out) :: t(n, m) !! Step for `delta`. integer, intent(out) :: irank !! Rank deficiency of the Jacobian wrt `beta`. real(wp), intent(out) :: rcond !! Approximate reciprocal condition of `fjacb`. real(wp), intent(inout) :: rss !! Residual sum of squares. integer, intent(out) :: idf !! Degrees of freedom of the fit, equal to the number of observations with nonzero !! weighted derivatives minus the number of parameters being estimated. real(wp), intent(out) :: rvar !! Residual variance. integer, intent(in) :: ifixb(np) !! Values designating whether the elements of `beta` are fixed at their input values or not. real(wp), intent(out) :: wrk1(n, q, m) !! A work array of `(n, q, m)` elements. real(wp), intent(out) :: wrk2(n, q) !! A work array of `(n, q)` elements. real(wp), intent(out) :: wrk3(np) !! A work array of `(np)` elements. real(wp), intent(out) :: wrk4(m, m) !! A work array of `(m, m)` elements. real(wp), intent(out) :: wrk5(m) !! A work array of `(m)` elements. real(wp), intent(out) :: wrk(lwrk) !! A work array of `(lwrk)` elements, _equivalenced_ to `wrk1` and `wrk2`. integer, intent(in) :: lwrk !! Length of vector `lwrk`. integer, intent(out) :: istopc !! Variable designating whether the computations were stoped due to a numerical !! error within subroutine `dodstp`. ! Local scalars real(wp) :: temp integer :: i, iunfix, j, junfix, kp logical :: forvcv ! Variable definitions (alphabetically) ! FORVCV: The variable designating whether subroutine DODSTP is called to set up for ! the covariance matrix computations (TRUE) or not (FALSE). ! I: An indexing variable. ! IUNFIX: The index of the next unfixed parameter. ! J: An indexing variable. ! JUNFIX: The index of the next unfixed parameter. ! KP: The rank of the Jacobian wrt BETA. ! TEMP: A temporary storage location forvcv = .true. istopc = 0 call lcstep(n, m, np, q, npp, & f, fjacb, fjacd, & wd, ldwd, ld2wd, ss, tt, ldtt, delta, & zero, epsfcn, isodr, & wrk6, omega, u, qraux, jpvt, & s, t, temp, irank, rcond, forvcv, & wrk1, wrk2, wrk3, wrk4, wrk5, wrk, lwrk, istopc) if (istopc /= 0) then return end if kp = npp - irank call dpodi(wrk6, n*q, kp, wrk3, 1) idf = 0 do i = 1, n if (any(fjacb(i, :, :) /= zero)) then idf = idf + 1 cycle end if if (isodr) then if (any(fjacd(i, :, :) /= zero)) then idf = idf + 1 cycle end if end if end do if (idf > kp) then idf = idf - kp rvar = rss/idf else idf = 0 rvar = rss end if ! Store variances in SD, restoring original order sd = zero do i = 1, kp sd(jpvt(i)) = wrk6(i, i) end do if (np > npp) then junfix = npp do j = np, 1, -1 if (ifixb(j) == 0) then sd(j) = zero else sd(j) = sd(junfix) junfix = junfix - 1 end if end do end if ! Store covariance matrix in VCV, restoring original order vcv = zero do i = 1, kp do j = i + 1, kp if (jpvt(i) > jpvt(j)) then vcv(jpvt(i), jpvt(j)) = wrk6(i, j) else vcv(jpvt(j), jpvt(i)) = wrk6(i, j) end if end do end do if (np > npp) then iunfix = npp do i = np, 1, -1 if (ifixb(i) == 0) then do j = i, 1, -1 vcv(i, j) = zero end do else junfix = npp do j = np, 1, -1 if (ifixb(j) == 0) then vcv(i, j) = zero else vcv(i, j) = vcv(iunfix, junfix) junfix = junfix - 1 end if end do iunfix = iunfix - 1 end if end do end if do i = 1, np vcv(i, i) = sd(i) sd(i) = sqrt(rvar*sd(i)) do j = 1, i vcv(j, i) = vcv(i, j) end do end do ! Unscale standard errors and covariance matrix do i = 1, np if (ssf(1) > zero) then sd(i) = sd(i)/ssf(i) else sd(i) = sd(i)/abs(ssf(1)) end if do j = 1, np if (ssf(1) > zero) then vcv(i, j) = vcv(i, j)/(ssf(i)*ssf(j)) else vcv(i, j) = vcv(i, j)/(ssf(1)*ssf(1)) end if end do end do end subroutine vcv_beta