pbepack_break.f90 Source File


This file depends on

sourcefile~~pbepack_break.f90~~EfferentGraph sourcefile~pbepack_break.f90 pbepack_break.f90 sourcefile~pbepack_basetypes.f90 pbepack_basetypes.f90 sourcefile~pbepack_break.f90->sourcefile~pbepack_basetypes.f90 sourcefile~pbepack_kinds.f90 pbepack_kinds.F90 sourcefile~pbepack_break.f90->sourcefile~pbepack_kinds.f90 sourcefile~pbepack_basetypes.f90->sourcefile~pbepack_kinds.f90 sourcefile~pbepack_lib.f90 pbepack_lib.f90 sourcefile~pbepack_basetypes.f90->sourcefile~pbepack_lib.f90 sourcefile~pbepack_lib.f90->sourcefile~pbepack_kinds.f90

Files dependent on this one

sourcefile~~pbepack_break.f90~~AfferentGraph sourcefile~pbepack_break.f90 pbepack_break.f90 sourcefile~pbepack_pbe.f90 pbepack_pbe.f90 sourcefile~pbepack_pbe.f90->sourcefile~pbepack_break.f90 sourcefile~pbepack.f90 pbepack.f90 sourcefile~pbepack.f90->sourcefile~pbepack_pbe.f90

Source Code

module pbepack_break
!! Derived types and procedures to compute the *breakage* term for 1D PBEs.
   use pbepack_kinds, only: rk, ZERO
   use pbepack_basetypes, only: particleterm
   use hrweno_grids, only: grid1
   implicit none
   private

   public :: breakterm, bfnc_t, dfnc_t

   type, extends(particleterm) :: breakterm
   !! Breakage term class.
      private
      procedure(bfnc_t), nopass, pointer :: bfnc => null()
         !! breakage frequency function
      procedure(dfnc_t), nopass, pointer :: dfnc => null()
         !! daughter distribution function
      real(rk), allocatable :: b(:)
         !! vector of breakage frequencies
      real(rk), allocatable :: d(:)
         !! vector of daughter probabilities
      logical :: update_b = .true.
         !! flag to select if vector **b** should be updated at each step.
      logical :: empty_b = .true.
         !! flag indicating state of vector **b**.
      logical :: update_d = .true.
         !! flag to select if vector **d** should be updated at each step.
      logical :: empty_d = .true.
         !! flag indicating state of vector **d**.
   contains
      procedure, pass(self), public :: eval => breakterm_eval
      procedure, pass(self), private :: compute_b
      procedure, pass(self), private :: compute_d
   end type breakterm

   abstract interface
      pure real(rk) function bfnc_t(x, y)
      !! Breakage frequency for 1D system
         import :: rk
         real(rk), intent(in) :: x
            !! internal coordinate of particle
         real(rk), intent(in) :: y(:)
            !! environment vector
      end function

      pure real(rk) function dfnc_t(xd, xo, y)
      !! Daughter distribution for 1D system
         import :: rk
         real(rk), intent(in) :: xd
            !! internal coordinate of daughter particle
         real(rk), intent(in) :: xo
            !! internal coordinate of original particle
         real(rk), intent(in) :: y(:)
            !! environment vector
      end function
   end interface

   interface breakterm
      module procedure :: breakterm_init
   end interface breakterm

contains

   type(breakterm) function breakterm_init(grid, b, d, moment, update_b, update_d, &
                                           name) result(self)
   !! Initialize `breakterm` object.
   !!$$
   !! \left ( \dot{u} \right )_{\mathrm{breakage}} =
   !! \int _x^\infty d(x,x',\mathbf{y})b(x',\mathbf{y})u(x',t)dx'
   !! -b(x,\mathbf{y})u(x,t)
   !!$$
   !! where \(moment\) is the moment of \(x\) conserved upon breakage. For example,
   !! if \(x\) denotes particle mass or volume, then \(moment=1\), whereas if \(x\) denotes
   !! particle radius or diameter, then \(moment=3\).
      type(grid1), intent(in) :: grid
         !! `grid1` object
      procedure(bfnc_t) :: b
         !! breakage frequency function, \( b(x,\textbf{y}) \)
      procedure(dfnc_t) :: d
         !! daughter distribution function, \( d(x,x',\textbf{y}) \)
      integer, intent(in), optional :: moment
         !! moment of \(x\) conserved during breakage (default=1)
      logical, intent(in), optional :: update_b
         !! if `true`, \( b(x,\textbf{y}) \) is reevaluated at each step (default=true)
      logical, intent(in), optional :: update_d
         !! if `true`, \( d(x,x',\textbf{y}) \) is reevaluated at each step (default=true)
      character(*), intent(in), optional :: name
         !! name (default="break-term")

      ! Set parameters
      call self%set_name(name, "break-term")
      call self%set_grid(grid)
      self%bfnc => b
      self%dfnc => d
      if (present(moment)) call self%set_moment(moment)
      if (present(update_b)) self%update_b = update_b
      if (present(update_d)) self%update_d = update_d

      ! Allocate stuff
      call self%particleterm_allocations()
      associate (nc => self%grid%ncells)
         allocate (self%b(nc), self%d((nc - 2)*(nc - 1)/2 + 3*(nc - 1)))
      end associate
      self%inited = .true.

   end function breakterm_init

   pure subroutine breakterm_eval(self, u, y, udot, udot_birth, udot_death)
   !! Evaluate the rate of breakage at a given instant \(t\), using the technique described in
   !! Section 3.3 of Kumar and Ramkrishna (1996). The birth term is computed using a slightly
   !! different procedure: the summation is done from the perspective of the original particles
   !! (the ones that break up), which allows for a simpler and more efficient calculation of
   !! the particle split fractions.
      class(breakterm), intent(inout) :: self
         !! object
      real(rk), intent(in) :: u(:)
         !! cell-average number density, \( \bar{u_i}(t) \)
      real(rk), intent(in) :: y(:)
         !! environment vector, \(y_j(t)\)
      real(rk), intent(out), optional :: udot(:)
         !! net rate of change (birth-death), \( \dot{u_i}(t) \)
      real(rk), intent(out), optional :: udot_birth(:)
         !! rate of birth
      real(rk), intent(out), optional :: udot_death(:)
         !! rate of death

      real(rk) :: source, weight(2)
      integer :: i, k

      call self%check_inited()

      associate (nc => self%grid%ncells, b => self%b, &
                 birth => self%udot_birth, death => self%udot_death)

         ! Evaluate breakage frequency and daughter distribution kernels
         if (self%update_b .or. self%empty_b) call self%compute_b(y)
         !if (self%update_d .or. self%empty_d) call self%compute_d(y)

         ! Death/sink term
         death = u*b
         if (present(udot_death)) udot_death = death

         ! Birth/source term
         birth = ZERO
         do k = 2, nc
            source = death(k)*self%grid%width(k)
            do i = 1, k - 1
               weight = daughter_split(i, k)
               birth(i:i + 1) = birth(i:i + 1) + weight*source
            end do
         end do
         birth = birth/self%grid%width
         if (present(udot_birth)) udot_birth = birth

         ! Net rate
         self%udot = birth - death
         if (present(udot)) udot = self%udot

      end associate

   contains

      pure function daughter_split(i_, k_) result(res)
      !! Evaluate the fraction of cell k assigned to cells i and (i+1).
      !! Based on Equation 27, but improved to consider the contribution to cell 1 arising
      !! from the integral between the left boundary of the grid domain and the center of cell
      !! 1. For this small region, we can only chose to preserve number or mass (not both). The
      !! current algorithm implements mass conservation.
         integer, intent(in) :: i_, k_
         real(rk) :: res(2)
         real(rk) :: d0, dm

         associate (x => self%grid%center, xo => self%grid%center(k_), m => self%moment)
            d0 = dfnc_integral(x(i_), x(i_ + 1), xo, 0)
            dm = dfnc_integral(x(i_), x(i_ + 1), xo, m)
            res(1) = (d0*x(i_ + 1)**m - dm)/(x(i_ + 1)**m - x(i_)**m)
            res(2) = d0 - res(1)
            if (i_ == 1) then
               !res(1) = res(1) + dfnc_integral(self%grid%left(1), x(1), xo, 0)
               res(1) = res(1) + dfnc_integral(self%grid%left(1), x(1), xo, m)/x(1)**m
            end if
         end associate

      end function daughter_split

      pure real(rk) function dfnc_integral(xa, xb, xo, m_) result(res)
      !! Numerical approximation to \( \int_{x_a}^{x_b} x^m dfnc(x,x_o,y)dx \) using Simpson's
      !! rule (with trapezoidal rule, the mass balance drops to 1e-3).
      !! Equation 28.
         real(rk), intent(in) :: xa, xb, xo
         integer, intent(in) :: m_

         real(rk) :: xc
         xc = (xa + xb)/2
         res = ( &
               xa**m_*self%dfnc(xa, xo, y) + &
               xb**m_*self%dfnc(xb, xo, y) + &
               xc**m_*self%dfnc(xc, xo, y)*4 &
               )*(xb - xa)/6
      end function dfnc_integral

   end subroutine breakterm_eval

   pure subroutine compute_b(self, y)
   !! Compute/update vector of breakage frequencies.
      class(breakterm), intent(inout) :: self
         !! object
      real(rk), intent(in) :: y(:)
         !! environment vector

      integer :: i

      do concurrent(i=1:self%grid%ncells)
         self%b(i) = self%bfnc(self%grid%center(i), y)
      end do

      if (self%empty_b) self%empty_b = .false.

   end subroutine compute_b

   pure subroutine compute_d(self, y)
   !! Compute/update vector of daughter probabilities.
   !! The distribution \( d(x,x',y) \) is only defined for \( x \leq x' \), leading to a
   !! triangular array of values. To avoid using such a 'special' array, the data is flattened
   !! and packed into a vector.
   !! @note Not active. Need better concept, covering 'd' and weights.
      class(breakterm), intent(inout) :: self
         !! object
      real(rk), intent(in) :: y(:)
         !! environment vector

      real(rk) :: xa
      integer :: i, j, k

      associate (nc => self%grid%ncells, x => self%grid%center)
      do j = 2, nc
         do i = 0, j
            if (i == 0) then
               xa = self%grid%left(1)
            else
               xa = self%grid%center(i)
            end if
            k = (j - 2)*(j - 1)/2 + 2*(j - 2) + (i + 1)
            self%d(k) = self%dfnc(xa, x(j), y)
         end do
      end do
      end associate

      if (self%empty_d) self%empty_d = .false.

   end subroutine compute_d

end module pbepack_break