Thermal conductivity¶
Overview¶
The polykin.properties.thermal_conductivity
module provides methods to estimate the thermal conductivity of pure
gases, gas mixtures, and liquid mixtures.
Gas | Liquid | |
---|---|---|
DIPPR equations | DIPPR100 , DIPPR102 |
DIPPR100 |
Estimation methods | — | — |
Mixing rules | KVMX2_Wassilijewa |
KLMX2_Li |
Pressure correction | KVPC_Stiel_Thodos , KVMXPC_Stiel_Thodos |
— |
Pure gases¶
The thermal conductivity of gases increases with pressure, but the effect is fairly small at low and moderate pressures. In the the low pressure domain, which extends from 1 mbar to 10 bar, the effect of pressure is often neglected. For pressures above 10 bar, the effect of pressure on thermal conductivity becomes progressiveley more important and should be considered.
Temperature correlations at low pressure¶
The thermal conductivity of low-pressure gases increases with temperature. Experimental data is usually correlated with DIPPR-100 or DIPPR-102.
# %pip install polykin
from polykin.properties.equations import DIPPR100
Let us define correlations for the thermal conductivity of ethylene and propylene.
# Parameters from Reid, Prausnitz, Pooling (1988)
kv_ethylene = DIPPR100(-1.760e-2, 1.200e-4, 3.335e-8, -1.366e-11,
Tmin=200, Tmax=1270, symbol='k', unit='W/(m·K)',
name='ethylene')
kv_propylene = DIPPR100(-7.584e-3, 6.101e-5, 9.966e-8, -3.840e-11,
Tmin=175, Tmax=1270, symbol='k', unit='W/(m·K)',
name='propylene')
from polykin import plotequations
_ = plotequations([kv_ethylene, kv_propylene],
title="Gas thermal conductivity")
Pressure correction¶
The increase of thermal conductivity with respect to the low-pressure value can be estimated with the method of Stiel and Thodos. The primary argument of this method is the molar volume, which can be estimated with an equation of state, like PengRobinson
.
from polykin.properties.thermal_conductivity import KVPC_Stiel_Thodos
from polykin.thermo.eos import PengRobinson
import numpy as np
Let us estimate the residual thermal conductivity of ethylene at 350 K and 100 bar.
# Ethylene constants
M = 28.05e-3 # kg/mol
Tc = 282.4 # K
Pc = 50.4e5 # Pa
Zc = 0.280
w = 0.089
# Molar volume estimate
eos = PengRobinson(Tc, Pc, w)
v = eos.v(T=350., P=100e5, y=np.array([1.])) # m³/mol
v
array([0.00018441])
KVPC_Stiel_Thodos(v[0], M, Tc, Pc, Zc)
0.016870676177529628
In this case, the pressure correction is of the same magnitude as the low-pressure value itself.
from polykin.properties.thermal_conductivity import KVMX2_Wassilijewa
Let us estimate the thermal conductivity of a 50:50 mol% mixture of ethylene and propylene at 350 K at 1 bar.
T = 350. # K
k = [kv_ethylene(T), kv_propylene(T)] # pure kv(T), W/(m.K)
KVMX2_Wassilijewa(y=[0.5, 0.5], k=k, M=[28.05e-3, 42.08e-3])
0.025935290438256965
Pressure correction¶
The increase of thermal conductivity with respect to the low-pressure value can be estimated with the method of Stiel and Thodos. The primary argument of this method is the molar volume, which can be estimated with an equation of state.
from polykin.properties.thermal_conductivity import KVMXPC_Stiel_Thodos
Let us estimate the residual thermal conductivity of a 50 mol% mixture of ethylene and propylene at 350 K and 100 bar.
# [ethylene, propylene] constants
M = [28.05e-3, 42.08e-3] # kg/mol
Tc = [282.4, 364.9] # K
Pc = [50.4e5, 46.0e5] # Pa
Zc = [0.280, 0.274]
w = [0.089, 0.144]
# Molar volume estimate
eos = PengRobinson(Tc, Pc, w)
y = np.array([0.5, 0.5]) # molmol
v = eos.v(T=350., P=100e5, y=y) # m³/mol
v
array([0.00011174])
KVMXPC_Stiel_Thodos(v[0], y, M, Tc, Pc, Zc, w)
0.03832154985250473
from polykin.properties.equations import DIPPR100
Let us define correlations for the thermal conductivity of styrene and butadiene.
# Parameters from Reid, Prausnitz, Pooling (1988)
kl_styrene = DIPPR100(2.696e-1, -3.384e-4, 1.675e-8, Tmin=243, Tmax=623,
symbol='k', unit='W/(m·K)', name='styrene')
kl_butadiene = DIPPR100(3.007e-1, -7.837e-4, 4.916e-7, Tmin=164, Tmax=393,
symbol='k', unit='W/(m·K)', name='1,3-butadiene')
_ = plotequations([kl_styrene, kl_butadiene],
title="Liquid thermal conductivity")
from polykin.properties.equations import DIPPR105
from polykin.properties.thermal_conductivity import KLMX2_Li
Let us estimate de thermal conductivity of a 50:50 wt% mixture of styrene and butadiene at 350 K.
# Parameters from Perry's
dl_styrene = DIPPR105(0.7397, 0.2603, 636, 0.3009, Tmin=243, Tmax=636,
symbol=r'\rho', unit='kmol/m³', name='styrene')
dl_butadiene = DIPPR105(1.2384, 0.2725, 425.17, 0.28813, Tmin=164, Tmax=425,
symbol=r'\rho', unit='kmol/m³', name='1,3-butadiene')
w = [0.5, 0.5] # mass fractions
T = 350. # temperature, K
k = [kl_styrene(T), kl_butadiene(T)] # pure kl(T), W/(m·K)
rho = [dl_styrene(T)*104.152, dl_butadiene(T)*54.092] # pure rhol(T), kg/m³
KLMX2_Li(w, k, rho)
0.10808664126899356