polykin.transport.rheology¤
mu_PowerLaw ¤
mu_PowerLaw(
gdot: float | FloatArray, K: float, n: float
) -> float | FloatArray
Calculate the viscosity of a fluid using the Power-Law model.
The viscosity \(\mu\) at a given shear rate \(\dot{\gamma}\) is calculated using the following equation:
where \(K\) is the consistency and \(n\) is the flow index.
PARAMETER | DESCRIPTION |
---|---|
gdot
|
Shear rate (1/s).
TYPE:
|
K
|
Consistency (Pa·s^n).
TYPE:
|
n
|
Flow index.
TYPE:
|
RETURNS | DESCRIPTION |
---|---|
float | FloatArray
|
Viscosity at the given shear rate (Pa·s). |
Examples:
Determine the viscosity of a fluid with a consistency of 10 Pa·s^n and a flow index of 0.2, at a shear rate of 1e3 1/s.
>>> from polykin.transport import mu_PowerLaw
>>> gdot = 1e3 # 1/s
>>> K = 10.0 # Pa·s^n
>>> n = 0.2
>>> mu = mu_PowerLaw(gdot, K, n)
>>> print(f"mu={mu:.2e} Pa.s")
mu=3.98e-02 Pa.s
Source code in src/polykin/transport/rheology.py
16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 |
|