polykin.transport.rheology¤
mu_Cross_modified ¤
mu_Cross_modified(
gdot: float | FloatArray, mu0: float, C: float, n: float
) -> float | FloatArray
Calculate the viscosity of a fluid using the modified Cross model.
The viscosity \(\mu\) at a given shear rate \(\dot{\gamma}\) is calculated using the following equation:
where \(\mu_0\) is the zero-shear viscosity, \(C\) is the relaxation constant, and \(n\) is the power-law index.
PARAMETER | DESCRIPTION |
---|---|
gdot
|
Shear rate (1/s).
TYPE:
|
mu0
|
Zero-shear viscosity (Pa·s).
TYPE:
|
C
|
Relaxation constant (1/Pa).
TYPE:
|
n
|
Power-law index.
TYPE:
|
RETURNS | DESCRIPTION |
---|---|
float | FloatArray
|
Viscosity at the given shear rate (Pa·s). |
See also
mu_Cross
: unmodified version of the Cross model.
Examples:
Determine the viscosity of a fluid with a zero-shear viscosity of 1e6 Pa·s, a relaxation constant of 2e-5 1/Pa, and a power-law index of 0.2, at a shear rate of 1.0 1/s.
>>> from polykin.transport import mu_Cross_modified
>>> gdot = 1.0 # 1/s
>>> mu0 = 1e6 # Pa·s
>>> C = 2e-5 # 1/Pa
>>> n = 0.2
>>> mu = mu_Cross_modified(gdot, mu0, C, n)
>>> print(f"mu={mu:.2e} Pa.s")
mu=8.34e+04 Pa.s
Source code in src/polykin/transport/rheology.py
111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 |
|