polykin.transport.rheology¤
mu_Cross ¤
mu_Cross(
gdot: float | FloatArray,
mu0: float,
lmbda: float,
n: float,
) -> float | FloatArray
Calculate the viscosity of a fluid using the Cross model.
The viscosity \(\mu\) at a given shear rate \(\dot{\gamma}\) is calculated using the following equation:
where \(\mu_0\) is the zero-shear viscosity, \(\lambda\) is the relaxation time, and \(n\) is the power-law index.
PARAMETER | DESCRIPTION |
---|---|
gdot
|
Shear rate (1/s).
TYPE:
|
mu0
|
Zero-shear viscosity (Pa·s).
TYPE:
|
lmbda
|
Relaxation constant (s).
TYPE:
|
n
|
Power-law index.
TYPE:
|
RETURNS | DESCRIPTION |
---|---|
float | FloatArray
|
Viscosity at the given shear rate (Pa·s). |
See also
mu_Cross_modified
: modified version of the Cross model.
Examples:
Determine the viscosity of a fluid with a zero-shear viscosity of 1.0 Pa·s, a relaxation time of 1 second, and a power-law index of 0.2, at a shear rate of 20 1/s.
>>> from polykin.transport import mu_Cross
>>> gdot = 20.0 # 1/s
>>> mu0 = 1.0 # Pa·s
>>> lmbda = 1.0 # s
>>> n = 0.2
>>> mu = mu_Cross(gdot, mu0, lmbda, n)
>>> print(f"mu={mu:.2e} Pa.s")
mu=8.34e-02 Pa.s
Source code in src/polykin/transport/rheology.py
58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 |
|