polykin.transport.rheology¤
mu_Carreau_Yasuda ¤
mu_Carreau_Yasuda(
gdot: float | FloatArray,
mu0: float,
muinf: float,
lmbda: float,
n: float,
a: float = 2.0,
) -> float | FloatArray
Calculate the viscosity of a fluid using the Carreau-Yasuda model.
The viscosity \(\mu\) at a given shear rate \(\dot{\gamma}\) is calculated using the following equation:
where \(\mu_0\) is the zero-shear viscosity, \(\mu_{\infty}\) is the infinite-shear viscosity, \(\lambda\) is the relaxation time, \(n\) is the power-law index, and \(a\) is the Yasuda transition parameter.
PARAMETER | DESCRIPTION |
---|---|
gdot
|
Shear rate (1/s).
TYPE:
|
mu0
|
Zero-shear viscosity (Pa·s).
TYPE:
|
muinf
|
Infinite-shear viscosity (Pa·s).
TYPE:
|
lmbda
|
Relaxation constant (s).
TYPE:
|
n
|
Power-law index.
TYPE:
|
a
|
Yasuda transition parameter (often assumed equal to 2).
TYPE:
|
RETURNS | DESCRIPTION |
---|---|
mu
|
Viscosity at the given shear rate (Pa·s).
TYPE:
|
Examples:
Determine the viscosity of a fluid with a zero-shear viscosity of 1.0 Pa·s, an infinite-shear viscosity of 0.001 Pa·s, a relaxation time of 1 second, a power-law index of 0.2, and a Yasuda parameter of 2.0, at a shear rate of 20 1/s.
>>> from polykin.transport import mu_Carreau_Yasuda
>>> gdot = 20.0 # 1/s
>>> mu0 = 1.0 # Pa·s
>>> muinf = 1e-3 # Pa·s
>>> lmbda = 1.0 # s
>>> n = 0.2
>>> a = 2.0
>>> mu = mu_Carreau_Yasuda(gdot, mu0, muinf, lmbda, n, a)
>>> print(f"mu={mu:.2e} Pa.s")
mu=9.18e-02 Pa.s
Source code in src/polykin/transport/rheology.py
163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 |
|