polykin.transport.rheology¤
aT_WLF ¤
aT_WLF(
T: float,
T0: float,
C1: float | None = None,
C2: float | None = None,
) -> float
Calculate the temperature shift factor using the Williams-Landel-Ferry equation.
The temperature shift factor \(a_T\) at a given temperature \(T\) is calculated using the following equation:
where \(T_0\) is the reference temperature, and \(C_1\) and \(C_2\) are the WLF constants.
If \(C_1\) and \(C_2\) are not provided, the universal values (\(C_1 = 17.44\) and \(C_2 = 51.60\) K) are used, in which case \(T_0\) is expected to be the glass-transition temperature \(T_g\).
The application of this equation is tipically limited to the range \(T_g \leq T \leq T_g + 100\) K.
References
- Stephen L. Rosen, "Fundamental principles of polymeric materials", Wiley, 2nd edition, 1993, p. 339.
PARAMETER | DESCRIPTION |
---|---|
T
|
Temperature (K).
TYPE:
|
T0
|
Reference temperature (K), usually taken to be the glass transition temperature.
TYPE:
|
C1
|
WLF constant. If None, the universal value is used.
TYPE:
|
C2
|
WLF constant (K). If None, the universal value is used.
TYPE:
|
RETURNS | DESCRIPTION |
---|---|
float
|
Temperature shift factor. |
Examples:
Determine the temperature shift factor at 120 °C for polystyrene, given that its glass transition temperature is 100 °C.
>>> from polykin.transport import aT_WLF
>>> T = 120 + 273.15 # K
>>> T0 = 100 + 273.15 # K
>>> aT = aT_WLF(T, T0)
>>> print(f"aT={aT:.2e}")
aT=1.34e-05
Source code in src/polykin/transport/rheology.py
222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 |
|