Skip to content

polykin.transport.hmt¤

Nu_tank ¤

Nu_tank(
    surface: Literal[
        "wall",
        "bottom-head",
        "helical-coil",
        "harp-coil-0",
        "harp-coil-45",
    ],
    impeller: Literal[
        "4BF",
        "4BP",
        "6BD",
        "HE3",
        "PROP",
        "anchor",
        "helical-ribbon",
    ],
    Re: float,
    Pr: float,
    mur: float,
    D_T: float = 1 / 3,
    H_T: float = 1.0,
    L_Ls: float = 1.0,
    d_T: float = 0.04,
    P_D: float = 1.0,
    nb: int = 2,
) -> float

Calculate the Nusselt number for a stirred tank.

This function calculates the Nusselt number based on impeller and surface type, and fluid dynamics parameters for a stirred tank, according to the correlations in chapter 14.4 of the Handbook of Industrial Mixing.

References

  • Penney, W. R. and Atiemo-Obeng, V. A. "Heat Transfer" in "Handbook of Industrial Mixing: Science and Practice", Wiley, 2004.
PARAMETER DESCRIPTION
surface

Heat transfer surface type.

TYPE: Literal['wall', 'bottom-head', 'helical-coil', 'harp-coil-0', 'harp-coil-45']

impeller

Impeller type.

TYPE: Literal['4BF', '4BP', '6BD', 'HE3', 'PROP', 'anchor', 'helical-ribbon']

Re

Impeller Reynolds number.

TYPE: float

Pr

Prandtl number.

TYPE: float

mur

Ratio of bulk viscosity to surface viscosity, \(\mu/\mu_s\).

TYPE: float

D_T

Ratio of impeller diameter to tank diameter, \(D/T\).

TYPE: float DEFAULT: 1 / 3

H_T

Ratio of liquid height to tank diameter, \(H/T\).

TYPE: float DEFAULT: 1.0

L_Ls

Ratio of height of impeller blade to standard value, \(L/L_s\).

TYPE: float DEFAULT: 1.0

d_T

Ratio of coil tube outer diameter to tank diameter, \(d/T\).

TYPE: float DEFAULT: 0.04

P_D

Ratio of impeller blade pitch to impeller diameter.

TYPE: float DEFAULT: 1.0

nb

Number of baffles or vertical tubes acting as baffles.

TYPE: int DEFAULT: 2

RETURNS DESCRIPTION
float

Nusselt number. Characteristic length depends on the surface type.

Examples:

Estimate the internal heat transfer coefficient for a 2-m diameter stirred tank equiped with a HE3 impeller operated at 120 rpm. Assume water properties and default geometry.

>>> from polykin.transport import Nu_tank
>>> T = 2.     # m
>>> D = T/3    # m
>>> rho = 1e3  # kg/m³
>>> mu = 1e-3  # Pa.s
>>> k  = 0.6   # W/m.K
>>> cp = 4.2e3 # J/kg.K
>>> Re = (120/60) * D**2 * rho / mu
>>> Pr = mu*cp/k
>>> mur = 1.   # neglect temperature correction
>>> Nu = Nu_tank('wall', 'HE3', Re, Pr, mur)
>>> h = Nu*k/T
>>> print(f"h={h:.1e} W/m².K")
h=1.6e+03 W/m².K
Source code in src/polykin/transport/hmt.py
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
def Nu_tank(
    surface: Literal['wall', 'bottom-head', 'helical-coil', 'harp-coil-0', 'harp-coil-45'],
    impeller: Literal['4BF', '4BP', '6BD', 'HE3', 'PROP', 'anchor', 'helical-ribbon'],
    Re: float,
    Pr: float,
    mur: float,
    D_T: float = 1/3,
    H_T: float = 1.,
    L_Ls: float = 1.,
    d_T: float = 0.04,
    P_D: float = 1.,
    nb: int = 2
) -> float:
    r"""Calculate the Nusselt number for a stirred tank.

    This function calculates the Nusselt number based on impeller and surface 
    type, and fluid dynamics parameters for a stirred tank, according to
    the correlations in chapter 14.4 of the Handbook of Industrial Mixing.

    **References**

    * Penney, W. R. and Atiemo-Obeng, V. A. "Heat Transfer" in "Handbook of
      Industrial Mixing: Science and Practice", Wiley, 2004.

    Parameters
    ----------
    surface : Literal['wall', 'bottom-head', 'helical-coil', 'harp-coil-0', 'harp-coil-45']
        Heat transfer surface type.
    impeller : Literal['4BF', '4BP', '6BD', 'HE3', 'PROP', 'anchor', 'helical-ribbon']
        Impeller type.
    Re : float
        Impeller Reynolds number.
    Pr : float
        Prandtl number.
    mur : float
        Ratio of bulk viscosity to surface viscosity, $\mu/\mu_s$.
    D_T : float
        Ratio of impeller diameter to tank diameter, $D/T$.
    H_T : float
        Ratio of liquid height to tank diameter, $H/T$.
    L_Ls : float
        Ratio of height of impeller blade to standard value, $L/L_s$.
    d_T : float, optional
        Ratio of coil tube outer diameter to tank diameter, $d/T$.
    P_D : float, optional
        Ratio of impeller blade pitch to impeller diameter.
    nb : int, optional
        Number of baffles or vertical tubes acting as baffles.

    Returns
    -------
    float
        Nusselt number. Characteristic length depends on the surface type.

    Examples
    --------
    Estimate the internal heat transfer coefficient for a 2-m diameter stirred
    tank equiped with a HE3 impeller operated at 120 rpm. Assume water properties
    and default geometry.
    >>> from polykin.transport import Nu_tank
    >>> T = 2.     # m
    >>> D = T/3    # m
    >>> rho = 1e3  # kg/m³
    >>> mu = 1e-3  # Pa.s
    >>> k  = 0.6   # W/m.K
    >>> cp = 4.2e3 # J/kg.K
    >>> Re = (120/60) * D**2 * rho / mu
    >>> Pr = mu*cp/k
    >>> mur = 1.   # neglect temperature correction
    >>> Nu = Nu_tank('wall', 'HE3', Re, Pr, mur)
    >>> h = Nu*k/T
    >>> print(f"h={h:.1e} W/m².K")
    h=1.6e+03 W/m².K
    """

    # Default parameters
    K = 0.
    a = 2/3
    b = 1/3
    c = 0.14
    Gc = 1.

    impeller_error = False
    if surface == 'wall':
        if impeller == '6BD':
            K = 0.74
            Gc = H_T**-0.15 * L_Ls**0.2
        elif impeller == '4BF':
            K = 0.66
            Gc = H_T**-0.15 * L_Ls**0.2
        elif impeller == '4BP':
            K = 0.45
            Gc = H_T**-0.15 * L_Ls**0.2
        elif impeller == 'HE3':
            K = 0.31
            Gc = H_T**-0.15
        elif impeller == 'PROP':
            K = 0.50
            Gc = H_T**-0.15 * 1.29*P_D/(0.29 + P_D)
        elif impeller == 'anchor':
            if Re < 12:
                K = 0.
            elif Re >= 12 and Re < 100:
                K = 0.69
                a = 1/2
            elif Re >= 100:
                K = 0.32
        elif impeller == 'helical-ribbon':
            if Re < 13:
                K = 0.94
                a = 1/3
            elif Re >= 13 and Re < 210:
                K = 0.61
                a = 1/2
            else:
                K = 0.25
        else:
            impeller_error = True
    elif surface == 'bottom-head':
        if impeller == '6BD':
            K = 0.50
            Gc = H_T**-0.15 * L_Ls**0.2
        elif impeller == '4BF':
            K = 0.40
            Gc = H_T**-0.15 * L_Ls**0.2
        elif impeller == '4BP':
            K = 1.08
            Gc = H_T**-0.15 * L_Ls**0.2
        elif impeller == 'HE3':
            K = 0.90
            Gc = H_T**-0.15
        else:
            impeller_error = True
    elif surface == 'helical-coil':
        if impeller == 'PROP':
            K = 0.016
            a = 0.67
            b = 0.37
            Gc = (D_T/(1/3))**0.1 * (d_T/0.04)**0.5
        elif impeller == '6BD':
            K = 0.03
            Gc = H_T**-0.15 * L_Ls**0.2 * (D_T/(1/3))**0.1 * (d_T/0.04)**0.5
        else:
            impeller_error = True
    elif surface == 'harp-coil-0':
        if impeller == '4BF':
            K = 0.06  # the text mentions this value might be overestimated
            a = 0.65
            b = 0.3
            Gc = H_T**-0.15 * L_Ls**0.2 * (D_T/(1/3))**0.33 * (2/nb)**0.2
        else:
            impeller_error = True
    elif surface == 'harp-coil-45':
        if impeller == '6BD':
            # quite some doubts regarding this equation
            K = 0.021
            a = 0.67
            b = 0.4
            Gc = H_T**-0.15 * L_Ls**0.2 * (D_T/(1/3))**0.33 * (2/nb)**0.2
        else:
            impeller_error = True
    else:
        raise ValueError(f"Invalid heat transfer `surface`: {surface}.")

    if impeller_error:
        raise ValueError(
            f"Invalid combination of `surface`={surface} and `impeller`={impeller}.")

    return K * Re**a * Pr**b * mur**c * Gc