polykin.transport.hmt¤
Nu_sphere_free ¤
Nu_sphere_free(Ra: float, Pr: float) -> float
Calculate the Nusselt number for free convection on a sphere.
The average Nusselt number \(\overline{Nu}=\bar{h}D/k\) is estimated by the following expression:
\[ \overline{Nu} = 2 + \frac{0.589 Ra^{1/4}}{[1 + (0.469/Pr)^{9/16}]^{4/9}} \]
\[\begin{bmatrix}
Ra \lesssim 10^{11} \\
Pr \ge 0.7 \\
\end{bmatrix}\]
where \(Ra\) is the Rayleigh number and \(Pr\) is the Prandtl number. The properties are to be evaluated at the film temperature.
References
- Churchill, S.W, "Free convection around immersed bodies", in Heat Exchange Design Handbook, Section 2.5.7, Hemisphere Publishing, New York, 1983.
- Incropera, Frank P., and David P. De Witt. "Fundamentals of heat and mass transfer", 4th edition, 1996, p. 502.
PARAMETER | DESCRIPTION |
---|---|
Ra
|
Rayleigh number based on sphere diameter.
TYPE:
|
Pr
|
Prandtl number.
TYPE:
|
RETURNS | DESCRIPTION |
---|---|
float
|
Nusselt number. |
See also
Nu_sphere
: related method for forced convection.
Examples:
Estimate the external heat transfer coefficient for a 50 mm sphere with a surface temperature of 330 K immersed in water with a bulk temperature of 290 K.
>>> from polykin.transport import Nu_sphere_free
>>> rho = 1.0e3 # kg/m³
>>> mu = 0.70e-3 # Pa.s
>>> cp = 4.2e3 # J/kg/K
>>> k = 0.63 # W/m/K
>>> beta = 362e-6 # 1/K
>>> D = 50e-3 # m
>>> g = 9.81 # m/s²
>>> Pr = cp*mu/k
>>> Gr = g*beta*(330-290)*D**3/(mu/rho)**2
>>> Ra = Gr*Pr
>>> Nu = Nu_sphere_free(Ra, Pr)
>>> h = Nu*k/D
>>> print(f"h={h:.1e} W/m².K")
h=7.8e+02 W/m².K
Source code in src/polykin/transport/hmt.py
697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 |
|