Skip to content

polykin.transport.hmt¤

Nu_sphere ¤

Nu_sphere(Re: float, Pr: float, mur: float) -> float

Calculate the Nusselt number for flow around an isolated sphere.

The average Nusselt number \(\overline{Nu}=\bar{h}D/k\) is estimated by the following expression:

\[ \overline{Nu} = 2 + ( 0.4 Re^{1/2} + 0.06 Re^{2/3} ) Pr^{0.4} \left(\frac{\mu}{\mu_s}\right)^{1/4} \]
\[\begin{bmatrix} 3.5 < Re < 7.6 \times 10^{4} \\ 0.71 < Pr < 380 \\ 1.0 < (\mu/\mu_s) 3.2 \end{bmatrix}\]

where \(Re\) is the sphere Reynolds number, \(Pr\) is the Prandtl number, \(\mu\) is the bulk viscosity, and \(\mu_s\) is the surface viscosity. All properties are to be evaluated at the bulk temperature, except \(\mu_s\).

References

  • Whitaker, S. (1972), "Forced convection heat transfer correlations for flow in pipes, past flat plates, single cylinders, single spheres, and for flow in packed beds and tube bundles", AIChE J., 18: 361-371.
  • Incropera, Frank P., and David P. De Witt. "Fundamentals of heat and mass transfer", 4th edition, 1996, p. 374.
PARAMETER DESCRIPTION
Re

Reynolds number based on sphere diameter.

TYPE: float

Pr

Prandtl number.

TYPE: float

mur

Ratio of bulk viscosity to surface viscosity, \(\mu/\mu_s\).

TYPE: float

RETURNS DESCRIPTION
float

Nusselt number.

See also
  • Nu_drop: specific method for drops.
Source code in src/polykin/transport/hmt.py
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
def Nu_sphere(Re: float, Pr: float, mur: float) -> float:
    r"""Calculate the Nusselt number for flow around an isolated sphere.

    The average Nusselt number $\overline{Nu}=\bar{h}D/k$ is estimated by the
    following expression:

    $$ \overline{Nu} = 2 + ( 0.4 Re^{1/2} + 0.06 Re^{2/3} ) Pr^{0.4}
                           \left(\frac{\mu}{\mu_s}\right)^{1/4} $$

    \begin{bmatrix}
    3.5 < Re < 7.6 \times 10^{4} \\
    0.71 < Pr < 380 \\
    1.0 < (\mu/\mu_s) 3.2
    \end{bmatrix}

    where $Re$ is the sphere Reynolds number, $Pr$ is the Prandtl number, 
    $\mu$ is the bulk viscosity, and $\mu_s$ is the surface viscosity. All 
    properties are to be evaluated at the bulk temperature, except $\mu_s$.

    **References**

    * Whitaker, S. (1972), "Forced convection heat transfer correlations for
      flow in pipes, past flat plates, single cylinders, single spheres, and
      for flow in packed beds and tube bundles", AIChE J., 18: 361-371.
    * Incropera, Frank P., and David P. De Witt. "Fundamentals of heat and
      mass transfer", 4th edition, 1996, p. 374.

    Parameters
    ----------
    Re : float
        Reynolds number based on sphere diameter.
    Pr : float
        Prandtl number.
    mur : float
        Ratio of bulk viscosity to surface viscosity, $\mu/\mu_s$.

    Returns
    -------
    float
        Nusselt number.

    See also
    --------
    * [`Nu_drop`](Nu_drop.md): specific method for drops.
    """
    check_range_warn(Re, 3.5, 7.6e4, 'Re')
    check_range_warn(Pr, 0.71, 380, 'Pr')
    check_range_warn(mur, 1.0, 3.2, 'mur')

    return 2 + (0.4*Re**(1/2) + 0.06*Re**(2/3))*Pr**0.4*(mur)**(1/4)

Graphical Illustration¤

Nu_sphere