polykin.transport.hmt¤
Nu_plate ¤
Nu_plate(Re: float, Pr: float) -> float
Calculate the Nusselt number for parallel flow over an isothermal flat plate.
The average Nusselt number \(\overline{Nu}=\bar{h}L/k\) is estimated by the following expressions:
\[ \overline{Nu} =
\begin{cases}
0.664 Re^{1/2} Pr^{1/3} ,& Re > 5 \times 10^5 \\
(0.037 Re^{4/5} - 871)Pr^{1/3} ,& 5 \times 10^5 < Re \lesssim 10^8
\end{cases} \]
\[ [0.6 < Pr < 60] \]
where \(Re\) is the Reynolds number and \(Pr\) is the Prandtl number.
References
- Incropera, Frank P., and David P. De Witt. "Fundamentals of heat and mass transfer", 4th edition, 1996, p. 354-356.
PARAMETER | DESCRIPTION |
---|---|
Re
|
Reynolds number based on plate length.
TYPE:
|
Pr
|
Prandtl number.
TYPE:
|
RETURNS | DESCRIPTION |
---|---|
float
|
Nusselt number. |
Source code in src/polykin/transport/hmt.py
111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 |
|