polykin.transport.hmt¤
Nu_drop ¤
Nu_drop(Re: float, Pr: float) -> float
Calculate the Nusselt number for a single freely falling drop.
The average Nusselt number \(\overline{Nu}=\bar{h}D/k\) is estimated by the following expression:
where \(Re\) is the drop Reynolds number and \(Pr\) is the Prandtl number. The exact range for \(Pr\) in this context is unspecified. All properties are to be evaluated at the bulk temperature. This correlation was developed for use in spray drying applications.
References
- Ranz, W. and Marshall, W. (1952) "Evaporation from Drops", Chemical Engineering Progress, 48, 141-146.
- Incropera, Frank P., and David P. De Witt. "Fundamentals of heat and mass transfer", 4th edition, 1996, p. 374.
PARAMETER | DESCRIPTION |
---|---|
Re
|
Reynolds number based on drop diameter.
TYPE:
|
Pr
|
Prandtl number.
TYPE:
|
RETURNS | DESCRIPTION |
---|---|
float
|
Nusselt number. |
See also
Nu_sphere
: generic method for spheres.
Examples:
Estimate the Nusselt number for a 1 mm styrene droplet falling in air.
>>> from polykin.transport import Nu_drop
>>> D = 1e-3 # m
>>> vt = 3.8 # m/s (from vt_sphere)
>>> rho = 1.2 # kg/m³
>>> mu = 1.6e-5 # Pa.s
>>> Pr = 0.7 # from table of air properties
>>> Re = rho*vt*D/mu
>>> Nu = Nu_drop(Re, Pr)
>>> print(f"Nu={Nu:.1f}")
Nu=11.0
Source code in src/polykin/transport/hmt.py
338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 |
|