Skip to content

polykin.transport.hmt¤

Nu_drop ¤

Nu_drop(Re: float, Pr: float) -> float

Calculate the Nusselt number for a single freely falling drop.

The average Nusselt number \(\overline{Nu}=\bar{h}D/k\) is estimated by the following expression:

\[ \overline{Nu} = 2 + 0.6 Re^{1/2} Pr^{1/3} \]
\[\begin{bmatrix} 0 < Re < 1000 \\ 0.7 < Pr < 100? \\ \end{bmatrix}\]

where \(Re\) is the drop Reynolds number and \(Pr\) is the Prandtl number. The exact range for \(Pr\) in this context is unspecified. All properties are to be evaluated at the bulk temperature. This correlation was developed for use in spray drying applications.

References

  • Ranz, W. and Marshall, W. (1952) "Evaporation from Drops", Chemical Engineering Progress, 48, 141-146.
  • Incropera, Frank P., and David P. De Witt. "Fundamentals of heat and mass transfer", 4th edition, 1996, p. 374.
PARAMETER DESCRIPTION
Re

Reynolds number based on drop diameter.

TYPE: float

Pr

Prandtl number.

TYPE: float

RETURNS DESCRIPTION
float

Nusselt number.

See also

Examples:

Estimate the Nusselt number for a 1 mm styrene droplet falling in air.

>>> from polykin.transport import Nu_drop
>>> D = 1e-3    # m
>>> vt = 3.8    # m/s (from vt_sphere)
>>> rho = 1.2   # kg/m³
>>> mu = 1.6e-5 # Pa.s
>>> Pr = 0.7    # from table of air properties
>>> Re = rho*vt*D/mu
>>> Nu = Nu_drop(Re, Pr)
>>> print(f"Nu={Nu:.1f}")
Nu=11.0
Source code in src/polykin/transport/hmt.py
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
def Nu_drop(Re: float, Pr: float) -> float:
    r"""Calculate the Nusselt number for a single freely falling drop.

    The average Nusselt number $\overline{Nu}=\bar{h}D/k$ is estimated by the
    following expression:

    $$ \overline{Nu} = 2 + 0.6 Re^{1/2} Pr^{1/3} $$

    \begin{bmatrix}
    0 < Re < 1000 \\
    0.7 < Pr < 100? \\
    \end{bmatrix}

    where $Re$ is the drop Reynolds number and $Pr$ is the Prandtl number. The
    exact range for $Pr$ in this context is unspecified. All properties are to
    be evaluated at the bulk temperature. This correlation was developed for use
    in spray drying applications.

    **References**

    * Ranz, W. and Marshall, W. (1952) "Evaporation from Drops", Chemical
      Engineering Progress, 48, 141-146.
    * Incropera, Frank P., and David P. De Witt. "Fundamentals of heat and
      mass transfer", 4th edition, 1996, p. 374.

    Parameters
    ----------
    Re : float
        Reynolds number based on drop diameter.
    Pr : float
        Prandtl number.

    Returns
    -------
    float
        Nusselt number.

    See also
    --------
    * [`Nu_sphere`](Nu_sphere.md): generic method for spheres.

    Examples
    --------
    Estimate the Nusselt number for a 1 mm styrene droplet falling in air.
    >>> from polykin.transport import Nu_drop
    >>> D = 1e-3    # m
    >>> vt = 3.8    # m/s (from vt_sphere)
    >>> rho = 1.2   # kg/m³
    >>> mu = 1.6e-5 # Pa.s
    >>> Pr = 0.7    # from table of air properties
    >>> Re = rho*vt*D/mu
    >>> Nu = Nu_drop(Re, Pr)
    >>> print(f"Nu={Nu:.1f}")
    Nu=11.0
    """
    check_range_warn(Re, 0, 1000, 'Re')
    check_range_warn(Pr, 0.7, 100, 'Pr')

    return 2 + 0.6*Re**(1/2)*Pr**(1/3)