polykin.transport.hmt¤
Nu_cylinder_free ¤
Nu_cylinder_free(Ra: float, Pr: float) -> float
Calculate the Nusselt number for free convection on a horizontal cylinder.
The average Nusselt number \(\overline{Nu}=\bar{h}D/k\) is estimated by the following expression:
where \(Ra\) is the Rayleigh number and \(Pr\) is the Prandtl number. The properties are to be evaluated at the film temperature.
References
- Churchill, Stuart W., and Humbert HS Chu. "Correlating equations for laminar and turbulent free convection from a horizontal cylinder", International Journal of Heat and Mass Transfer 18, no. 9 (1975): 1049-1053.
- Incropera, Frank P., and David P. De Witt. "Fundamentals of heat and mass transfer", 4th edition, 1996, p. 502.
PARAMETER | DESCRIPTION |
---|---|
Ra
|
Rayleigh number based on cylinder diameter.
TYPE:
|
Pr
|
Prandtl number.
TYPE:
|
RETURNS | DESCRIPTION |
---|---|
float
|
Nusselt number. |
See also
Nu_cylinder
: related method for forced convection.
Examples:
Estimate the external heat transfer coefficient for a DN25 tube with a surface temperature of 330 K immersed in water with a bulk temperature of 290 K.
>>> from polykin.transport import Nu_cylinder_free
>>> rho = 1.0e3 # kg/m³ (properties at 310 K)
>>> mu = 0.70e-3 # Pa.s
>>> cp = 4.2e3 # J/kg/K
>>> k = 0.63 # W/m/K
>>> beta = 362e-6 # 1/K
>>> D = 33.7e-3 # m (OD from pipe chart)
>>> g = 9.81 # m/s²
>>> Pr = cp*mu/k
>>> Gr = g*beta*(330-290)*D**3/(mu/rho)**2
>>> Ra = Gr*Pr
>>> Nu = Nu_cylinder_free(Ra, Pr)
>>> h = Nu*k/D
>>> print(f"h={h:.1e} W/m².K")
h=1.1e+03 W/m².K
Source code in src/polykin/transport/hmt.py
221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 |
|