Skip to content

polykin.transport.hmt¤

Nu_cylinder_free ¤

Nu_cylinder_free(Ra: float, Pr: float) -> float

Calculate the Nusselt number for free convection on a horizontal cylinder.

The average Nusselt number \(\overline{Nu}=\bar{h}D/k\) is estimated by the following expression:

\[ \overline{Nu} = \left(0.6 + \frac{0.387 Ra^{1/6}} {[1 + (0.559/Pr)^{9/16}]^{8/27}}\right)^2 \]
\[ \left[ Ra \lesssim 10^{12} \right] \]

where \(Ra\) is the Rayleigh number and \(Pr\) is the Prandtl number. The properties are to be evaluated at the film temperature.

References

  • Churchill, Stuart W., and Humbert HS Chu. "Correlating equations for laminar and turbulent free convection from a horizontal cylinder", International Journal of Heat and Mass Transfer 18, no. 9 (1975): 1049-1053.
  • Incropera, Frank P., and David P. De Witt. "Fundamentals of heat and mass transfer", 4th edition, 1996, p. 502.
PARAMETER DESCRIPTION
Ra

Rayleigh number based on cylinder diameter.

TYPE: float

Pr

Prandtl number.

TYPE: float

RETURNS DESCRIPTION
float

Nusselt number.

See also

Examples:

Estimate the external heat transfer coefficient for a DN25 tube with a surface temperature of 330 K immersed in water with a bulk temperature of 290 K.

>>> from polykin.transport import Nu_cylinder_free
>>> rho = 1.0e3   # kg/m³ (properties at 310 K)
>>> mu = 0.70e-3  # Pa.s
>>> cp = 4.2e3    # J/kg/K
>>> k = 0.63      # W/m/K
>>> beta = 362e-6 # 1/K
>>> D = 33.7e-3   # m (OD from pipe chart)
>>> g = 9.81      # m/s²
>>> Pr = cp*mu/k
>>> Gr = g*beta*(330-290)*D**3/(mu/rho)**2
>>> Ra = Gr*Pr
>>> Nu = Nu_cylinder_free(Ra, Pr)
>>> h = Nu*k/D
>>> print(f"h={h:.1e} W/m².K")
h=1.1e+03 W/m².K
Source code in src/polykin/transport/hmt.py
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
def Nu_cylinder_free(Ra: float, Pr: float) -> float:
    r"""Calculate the Nusselt number for free convection on a horizontal 
    cylinder.

    The average Nusselt number $\overline{Nu}=\bar{h}D/k$ is estimated by the
    following expression:

    $$ \overline{Nu} = \left(0.6 + \frac{0.387 Ra^{1/6}}
       {[1 + (0.559/Pr)^{9/16}]^{8/27}}\right)^2 $$

    $$ \left[  Ra \lesssim 10^{12} \right] $$

    where $Ra$ is the Rayleigh number and $Pr$ is the Prandtl number. The 
    properties are to be evaluated at the film temperature.

    **References**

    * Churchill, Stuart W., and Humbert HS Chu. "Correlating equations for
      laminar and turbulent free convection from a horizontal cylinder", 
      International Journal of Heat and Mass Transfer 18, no. 9 (1975): 1049-1053.
    * Incropera, Frank P., and David P. De Witt. "Fundamentals of heat and
      mass transfer", 4th edition, 1996, p. 502.

    Parameters
    ----------
    Ra : float
        Rayleigh number based on cylinder diameter.
    Pr : float
        Prandtl number.

    Returns
    -------
    float
        Nusselt number.

    See also
    --------
    - [`Nu_cylinder`](Nu_cylinder.md): related method for forced convection.

    Examples
    --------
    Estimate the external heat transfer coefficient for a DN25 tube with a
    surface temperature of 330 K immersed in water with a bulk temperature of
    290 K.
    >>> from polykin.transport import Nu_cylinder_free
    >>> rho = 1.0e3   # kg/m³ (properties at 310 K)
    >>> mu = 0.70e-3  # Pa.s
    >>> cp = 4.2e3    # J/kg/K
    >>> k = 0.63      # W/m/K
    >>> beta = 362e-6 # 1/K
    >>> D = 33.7e-3   # m (OD from pipe chart)
    >>> g = 9.81      # m/s²
    >>> Pr = cp*mu/k
    >>> Gr = g*beta*(330-290)*D**3/(mu/rho)**2
    >>> Ra = Gr*Pr
    >>> Nu = Nu_cylinder_free(Ra, Pr)
    >>> h = Nu*k/D
    >>> print(f"h={h:.1e} W/m².K")
    h=1.1e+03 W/m².K
    """
    check_range_warn(Ra, 0, 1e12, 'Ra')

    return (0.6 + 0.387*Ra**(1/6) / (1 + (0.559/Pr)**(9/16))**(8/27))**2