polykin.transport.hmt¤
Nu_cylinder ¤
Nu_cylinder(Re: float, Pr: float) -> float
Calculate the Nusselt number for cross flow over a circular cylinder.
The average Nusselt number \(\overline{Nu}=\bar{h}D/k\) is estimated by the following expression:
\[ \overline{Nu} = 0.3 + \frac{0.62 Re^{1/2} Pr^{1/3}}
{\left[1 + (0.4/Pr)^{2/3}\right]^{1/4}}
\left[1 + \left(\frac{Re}{282 \times 10^3}\right)^{5/8}\right]^{4/5} \]
\[ \left[ Re Pr > 0.2 \right] \]
where \(Re\) is the Reynolds number and \(Pr\) is the Prandtl number. The properties are to be evaluated at the film temperature.
References
- Churchill, S. W., and Bernstein, M. "A Correlating Equation for Forced Convection From Gases and Liquids to a Circular Cylinder in Crossflow", ASME. J. Heat Transfer. May 1977; 99(2): 300.
- Incropera, Frank P., and David P. De Witt. "Fundamentals of heat and mass transfer", 4th edition, 1996, p. 370.
PARAMETER | DESCRIPTION |
---|---|
Re
|
Reynolds number based on cylinder diameter.
TYPE:
|
Pr
|
Prandtl number.
TYPE:
|
RETURNS | DESCRIPTION |
---|---|
float
|
Nusselt number. |
See also
Nu_cylinder_bank
: specific method for a bank of tubes.Nu_cylinder_free
: related method for free convection.
Examples:
Estimate the external heat transfer coefficient for water flowing at 2 m/s across a DN25 pipe.
>>> from polykin.transport import Nu_cylinder
>>> rho = 1e3 # kg/m³
>>> mu = 1e-3 # Pa.s
>>> cp = 4.2e3 # J/kg/K
>>> k = 0.6 # W/m/K
>>> v = 2. # m/s
>>> D = 33.7e-3 # m (OD from pipe chart)
>>> Re = rho*v*D/mu
>>> Pr = cp*mu/k
>>> Nu = Nu_cylinder(Re, Pr)
>>> h = Nu*k/D
>>> print(f"h={h:.1e} W/m².K")
h=7.0e+03 W/m².K
Source code in src/polykin/transport/hmt.py
155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 |
|