Skip to content

Heat & Mass Transfer (polykin.transport.hmt)¤

Overview¤

This module implements heat transfer correlations for geometries commonly encountered in chemical processes. Thanks to the heat and mass transfer analogy, convection correlations of the form $ Nu = Nu(Re, Pr) $ can also be used for mass transfer involving the same geometry by interpreting them as $ Sh = Sh(Re, Sc) $.

Geometry Forced convection Free convection
Cylinder Nu_cylinder Nu_cylinder_free
Cylinder, bank Nu_cylinder_bank -
Flat plate Nu_plate Nu_plate_free
Sphere Nu_sphere, Nu_drop Nu_sphere_free
Stirred tank Nu_tank -
Tube (internal) Nu_tube -

Dimensionless Numbers¤

Dimensionless number Definition
Grashof, \(Gr\) $$ \frac{g \beta (T_s - T_b) L^3}{\nu ^ 2} $$
Nusselt, \(Nu\) $$ \frac{h L}{k} $$
Rayleigh, \(Ra\) $$ Gr Pr = \frac{g \beta (T_s - T_b) L^3}{\nu \alpha} $$
Reynolds, \(Re\) $$ \frac{\rho v L}{\mu}=\frac{v L}{\nu} $$
Prandtl, \(Pr\) $$ \frac{c_P \mu}{k} = \frac{\nu}{\alpha} $$
Schmidt, \(Sc\) $$ \frac{\nu}{\mathscr{D}} $$
Sherwood, \(Sh\) $$ \frac{k_c L}{\mathscr{D}} $$