polykin.transport.heat¤
Nu_tank ¤
Nu_tank(
surface: Literal[
"wall",
"bottom-head",
"helical-coil",
"harp-coil-0",
"harp-coil-45",
],
impeller: Literal[
"4BF",
"4BP",
"6BD",
"HE3",
"PROP",
"anchor",
"helical-ribbon",
],
Re: float,
Pr: float,
mur: float,
D_T: float = 1 / 3,
H_T: float = 1.0,
L_Ls: float = 1.0,
d_T: float = 0.04,
P_D: float = 1.0,
nb: int = 2,
) -> float
Calculate the Nusselt number for a stirred tank.
This function calculates the Nusselt number based on impeller and surface type, and fluid dynamics parameters for a stirred tank, according to the correlations in chapter 14.4 of the Handbook of Industrial Mixing.
References
- Penney, W. R. and Atiemo-Obeng, V. A. "Heat Transfer" in "Handbook of Industrial Mixing: Science and Practice", Wiley, 2004.
PARAMETER | DESCRIPTION |
---|---|
surface
|
Heat transfer surface type.
TYPE:
|
impeller
|
Impeller type.
TYPE:
|
Re
|
Impeller Reynolds number.
TYPE:
|
Pr
|
Prandtl number.
TYPE:
|
mur
|
Ratio of bulk viscosity to surface viscosity, \(\mu/\mu_s\).
TYPE:
|
D_T
|
Ratio of impeller diameter to tank diameter, \(D/T\).
TYPE:
|
H_T
|
Ratio of liquid height to tank diameter, \(H/T\).
TYPE:
|
L_Ls
|
Ratio of height of impeller blade to standard value, \(L/L_s\).
TYPE:
|
d_T
|
Ratio of coil tube outer diameter to tank diameter, \(d/T\).
TYPE:
|
P_D
|
Ratio of impeller blade pitch to impeller diameter.
TYPE:
|
nb
|
Number of baffles or vertical tubes acting as baffles.
TYPE:
|
RETURNS | DESCRIPTION |
---|---|
float
|
Nusselt number. Characteristic length depends on the surface type. |
Examples:
Estimate the internal heat transfer coefficient for a 2-m diameter stirred tank equiped with a HE3 impeller operated at 120 rpm. Assume water properties and default geometry.
>>> from polykin.transport.heat import Nu_tank
>>> T = 2. # m
>>> D = T/3 # m
>>> rho = 1e3 # kg/m³
>>> mu = 1e-3 # Pa.s
>>> k = 0.6 # W/m.K
>>> cp = 4.2e3 # J/kg.K
>>> Re = (120/60) * D**2 * rho / mu
>>> Pr = mu*cp/k
>>> mur = 1. # neglect temperature correction
>>> Nu = Nu_tank('wall', 'HE3', Re, Pr, mur)
>>> h = Nu*k/T
>>> print(f"h={h:.1e} W/m².K")
h=1.6e+03 W/m².K
Source code in src/polykin/transport/heat.py
324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 |
|