Skip to content

polykin.transport.heat¤

Nu_sphere ¤

Nu_sphere(Re: float, Pr: float, mur: float) -> float

Calculate the Nusselt number for an isolated sphere.

The average Nusselt number \(\overline{Nu}=\bar{h}D/k\) is estimated by the following expression:

\[ \overline{Nu} = 2 + ( 0.4 Re^{1/2} + 0.06 Re^{2/3} ) Pr^{0.4} \left(\frac{\mu}{\mu_s}\right)^{1/4} \]
\[\begin{bmatrix} 3.5 < Re < 7.6 \times 10^{4} \\ 0.71 < Pr < 380 \\ 1.0 < (\mu/\mu_s) 3.2 \end{bmatrix}\]

where \(Re\) is the sphere Reynolds number, \(Pr\) is the Prandtl number, \(\mu\) is the bulk viscosity, and \(\mu_s\) is the surface viscosity. All properties are to be evaluated at the bulk temperature, except \(\mu_s\).

References

  • Whitaker, S. (1972), "Forced convection heat transfer correlations for flow in pipes, past flat plates, single cylinders, single spheres, and for flow in packed beds and tube bundles", AIChE J., 18: 361-371.
  • Incropera, Frank P., and David P. De Witt. "Fundamentals of heat and mass transfer", 4th edition, 1996, p. 374.
PARAMETER DESCRIPTION
Re

Sphere Reynolds number.

TYPE: float

Pr

Prandtl number.

TYPE: float

mur

Ratio of bulk viscosity to surface viscosity, \(\mu/\mu_s\).

TYPE: float

RETURNS DESCRIPTION
float

Nusselt number.

See also
  • Nu_drop: specific method for drops.
Source code in src/polykin/transport/heat.py
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
def Nu_sphere(Re: float, Pr: float, mur: float) -> float:
    r"""Calculate the Nusselt number for an isolated sphere.

    The average Nusselt number $\overline{Nu}=\bar{h}D/k$ is estimated by the
    following expression:

    $$ \overline{Nu} = 2 + ( 0.4 Re^{1/2} + 0.06 Re^{2/3} ) Pr^{0.4}
                           \left(\frac{\mu}{\mu_s}\right)^{1/4} $$

    \begin{bmatrix}
    3.5 < Re < 7.6 \times 10^{4} \\
    0.71 < Pr < 380 \\
    1.0 < (\mu/\mu_s) 3.2
    \end{bmatrix}

    where $Re$ is the sphere Reynolds number, $Pr$ is the Prandtl number, 
    $\mu$ is the bulk viscosity, and $\mu_s$ is the surface viscosity. All 
    properties are to be evaluated at the bulk temperature, except $\mu_s$.

    **References**

    * Whitaker, S. (1972), "Forced convection heat transfer correlations for
      flow in pipes, past flat plates, single cylinders, single spheres, and
      for flow in packed beds and tube bundles", AIChE J., 18: 361-371.
    * Incropera, Frank P., and David P. De Witt. "Fundamentals of heat and
      mass transfer", 4th edition, 1996, p. 374.

    Parameters
    ----------
    Re : float
        Sphere Reynolds number.
    Pr : float
        Prandtl number.
    mur : float
        Ratio of bulk viscosity to surface viscosity, $\mu/\mu_s$.

    Returns
    -------
    float
        Nusselt number.

    See also
    --------
    * [`Nu_drop`](Nu_drop.md): specific method for drops.
    """
    check_range_warn(Re, 3.5, 7.6e4, 'Re')
    check_range_warn(Pr, 0.71, 380, 'Pr')
    check_range_warn(mur, 1.0, 3.2, 'mur')

    return 2 + (0.4*Re**(1/2) + 0.06*Re**(2/3))*Pr**0.4*(mur)**(1/4)

Graphical Illustration¤

Nu_sphere