polykin.transport.heat¤
Nu_sphere ¤
Nu_sphere(Re: float, Pr: float, mur: float) -> float
Calculate the Nusselt number for an isolated sphere.
The average Nusselt number \(\overline{Nu}=\bar{h}D/k\) is estimated by the following expression:
where \(Re\) is the sphere Reynolds number, \(Pr\) is the Prandtl number, \(\mu\) is the bulk viscosity, and \(\mu_s\) is the surface viscosity. All properties are to be evaluated at the bulk temperature, except \(\mu_s\).
References
- Whitaker, S. (1972), "Forced convection heat transfer correlations for flow in pipes, past flat plates, single cylinders, single spheres, and for flow in packed beds and tube bundles", AIChE J., 18: 361-371.
- Incropera, Frank P., and David P. De Witt. "Fundamentals of heat and mass transfer", 4th edition, 1996, p. 374.
PARAMETER | DESCRIPTION |
---|---|
Re
|
Sphere Reynolds number.
TYPE:
|
Pr
|
Prandtl number.
TYPE:
|
mur
|
Ratio of bulk viscosity to surface viscosity, \(\mu/\mu_s\).
TYPE:
|
RETURNS | DESCRIPTION |
---|---|
float
|
Nusselt number. |
See also
Nu_drop
: specific method for drops.
Source code in src/polykin/transport/heat.py
211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 |
|