Skip to content

polykin.transport.heat¤

Nu_flatplate ¤

Nu_flatplate(Re: float, Pr: float) -> float

Calculate the Nusselt number for parallel flow over an isothermal flat plate.

The average Nusselt number \(\overline{Nu}=\bar{h}L/k\) is estimated by the following expressions:

\[ \overline{Nu} = \begin{cases} 0.664 Re^{1/2} Pr^{1/3} ,& Re > 5 \times 10^5 \\ (0.037 Re^{4/5} - 871)Pr^{1/3} ,& 5 \times 10^5 < Re \lesssim 10^8 \end{cases} \]
\[ [0.6 < Pr < 60] \]

where \(Re\) is the Reynolds number and \(Pr\) is the Prandtl number.

References

  • Incropera, Frank P., and David P. De Witt. "Fundamentals of heat and mass transfer", 4th edition, 1996, p. 354-356.
PARAMETER DESCRIPTION
Re

Plate Reynolds number.

TYPE: float

Pr

Prandtl number.

TYPE: float

RETURNS DESCRIPTION
float

Nusselt number.

Source code in src/polykin/transport/heat.py
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
def Nu_flatplate(Re: float, Pr: float) -> float:
    r"""Calculate the Nusselt number for parallel flow over an isothermal flat
    plate.

    The average Nusselt number $\overline{Nu}=\bar{h}L/k$ is estimated by the
    following expressions:    

    $$ \overline{Nu} =
    \begin{cases}
    0.664 Re^{1/2} Pr^{1/3} ,& Re > 5 \times 10^5 \\
    (0.037 Re^{4/5} - 871)Pr^{1/3} ,& 5 \times 10^5 < Re \lesssim 10^8
    \end{cases} $$

    $$ [0.6 < Pr < 60] $$

    where $Re$ is the Reynolds number and $Pr$ is the Prandtl number.

    **References**

    * Incropera, Frank P., and David P. De Witt. "Fundamentals of heat and
      mass transfer", 4th edition, 1996, p. 354-356.

    Parameters
    ----------
    Re : float
        Plate Reynolds number.
    Pr : float
        Prandtl number.

    Returns
    -------
    float
        Nusselt number.
    """
    check_range_warn(Pr, 0.6, 60, 'Pr')

    Re_c = 5e5
    if Re < Re_c:
        return 0.664*Re**(1/2)*Pr**(1/3)
    else:
        A = 0.037*Re_c**(4/5) - 0.664*Re_c**(1/2)
        return (0.037*Re**(4/5) - A)*Pr**(1/3)

Graphical Illustration¤

Nu_flatplate