Skip to content

polykin.transport.heat¤

Nu_drop ¤

Nu_drop(Re: float, Pr: float) -> float

Calculate the Nusselt number for a single freely falling drop.

The average Nusselt number \(\overline{Nu}=\bar{h}D/k\) is estimated by the following expression:

\[ \overline{Nu} = 2 + 0.6 Re^{1/2} Pr^{1/3} \]
\[\begin{bmatrix} 0 < Re < 1000 \\ 0.7 < Pr < 100? \\ \end{bmatrix}\]

where \(Re\) is the drop Reynolds number and \(Pr\) is the Prandtl number. The exact range for \(Pr\) in this context is unspecified. All properties are to be evaluated at the bulk temperature. This correlation was developed for use in spray drying applications.

References

  • Ranz, W. and Marshall, W. (1952) "Evaporation from Drops", Chemical Engineering Progress, 48, 141-146.
  • Incropera, Frank P., and David P. De Witt. "Fundamentals of heat and mass transfer", 4th edition, 1996, p. 374.
PARAMETER DESCRIPTION
Re

Drop Reynolds number.

TYPE: float

Pr

Prandtl number.

TYPE: float

RETURNS DESCRIPTION
float

Nusselt number.

See also

Examples:

Estimate the Nusselt number for a 1 mm styrene droplet falling in air.

>>> from polykin.transport.heat import Nu_drop
>>> D = 1e-3    # m
>>> vt = 3.8    # m/s (from vt_sphere)
>>> rho = 1.2   # kg/m³
>>> mu = 1.6e-5 # Pa.s
>>> Pr = 0.7    # from table of air properties
>>> Re = rho*vt*D/mu
>>> Nu = Nu_drop(Re, Pr)
>>> print(f"Nu={Nu:.1f}")
Nu=11.0
Source code in src/polykin/transport/heat.py
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
def Nu_drop(Re: float, Pr: float) -> float:
    r"""Calculate the Nusselt number for a single freely falling drop.

    The average Nusselt number $\overline{Nu}=\bar{h}D/k$ is estimated by the
    following expression:

    $$ \overline{Nu} = 2 + 0.6 Re^{1/2} Pr^{1/3} $$

    \begin{bmatrix}
    0 < Re < 1000 \\
    0.7 < Pr < 100? \\
    \end{bmatrix}

    where $Re$ is the drop Reynolds number and $Pr$ is the Prandtl number. The
    exact range for $Pr$ in this context is unspecified. All properties are to
    be evaluated at the bulk temperature. This correlation was developed for use
    in spray drying applications.

    **References**

    * Ranz, W. and Marshall, W. (1952) "Evaporation from Drops", Chemical
      Engineering Progress, 48, 141-146.
    * Incropera, Frank P., and David P. De Witt. "Fundamentals of heat and
      mass transfer", 4th edition, 1996, p. 374.

    Parameters
    ----------
    Re : float
        Drop Reynolds number.
    Pr : float
        Prandtl number.

    Returns
    -------
    float
        Nusselt number.

    See also
    --------
    * [`Nu_sphere`](Nu_sphere.md): generic method for spheres.

    Examples
    --------
    Estimate the Nusselt number for a 1 mm styrene droplet falling in air.
    >>> from polykin.transport.heat import Nu_drop
    >>> D = 1e-3    # m
    >>> vt = 3.8    # m/s (from vt_sphere)
    >>> rho = 1.2   # kg/m³
    >>> mu = 1.6e-5 # Pa.s
    >>> Pr = 0.7    # from table of air properties
    >>> Re = rho*vt*D/mu
    >>> Nu = Nu_drop(Re, Pr)
    >>> print(f"Nu={Nu:.1f}")
    Nu=11.0
    """
    check_range_warn(Re, 0, 1000, 'Re')
    check_range_warn(Pr, 0.7, 100, 'Pr')

    return 2 + 0.6*Re**(1/2)*Pr**(1/3)