Skip to content

polykin.transport.heat¤

Nu_cylinder ¤

Nu_cylinder(Re: float, Pr: float) -> float

Calculate the Nusselt number for cross flow over a circular cylinder.

The average Nusselt number \(\overline{Nu}=\bar{h}D/k\) is estimated by the following expression:

\[ \overline{Nu} = 0.3 + \frac{0.62 Re^{1/2} Pr^{1/3}} {\left[1 + (0.4/Pr)^{2/3}\right]^{1/4}} \left[1 + \left(\frac{Re}{282 \times 10^3}\right)^{5/8}\right]^{4/5} \]
\[ \left[ Re Pr > 0.2 \right] \]

where \(Re\) is the Reynolds number and \(Pr\) is the Prandtl number. The properties are to be evaluated at the film temperature.

References

  • Churchill, S. W., and Bernstein, M. "A Correlating Equation for Forced Convection From Gases and Liquids to a Circular Cylinder in Crossflow", ASME. J. Heat Transfer. May 1977; 99(2): 300.
  • Incropera, Frank P., and David P. De Witt. "Fundamentals of heat and mass transfer", 4th edition, 1996, p. 370.
PARAMETER DESCRIPTION
Re

Reynolds number.

TYPE: float

Pr

Prandtl number.

TYPE: float

RETURNS DESCRIPTION
float

Nusselt number.

See also

Examples:

Estimate the external heat transfer coefficient for water flowing at 2 m/s across a DN25 pipe.

>>> from polykin.transport.heat import Nu_cylinder
>>> rho = 1e3   # kg/m³
>>> mu = 1e-3   # Pa.s
>>> cp = 4.2e3  # J/kg/K
>>> k = 0.6     # W/m/K
>>> v = 2.      # m/s
>>> D = 33.7e-3 # m (OD from pipe chart)
>>> Re = rho*v*D/mu
>>> Pr = cp*mu/k
>>> Nu = Nu_cylinder(Re, Pr)
>>> h = Nu*k/D
>>> print(f"h={h:.1e} W/m².K")
h=7.0e+03 W/m².K
Source code in src/polykin/transport/heat.py
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
def Nu_cylinder(Re: float, Pr: float) -> float:
    r"""Calculate the Nusselt number for cross flow over a circular cylinder.

    The average Nusselt number $\overline{Nu}=\bar{h}D/k$ is estimated by the
    following expression:

    $$ \overline{Nu} = 0.3 + \frac{0.62 Re^{1/2} Pr^{1/3}}
    {\left[1 + (0.4/Pr)^{2/3}\right]^{1/4}} 
    \left[1 + \left(\frac{Re}{282 \times 10^3}\right)^{5/8}\right]^{4/5} $$

    $$ \left[  Re Pr > 0.2 \right] $$

    where $Re$ is the Reynolds number and $Pr$ is the Prandtl number. The 
    properties are to be evaluated at the film temperature.

    **References**

    * Churchill, S. W., and Bernstein, M. "A Correlating Equation for Forced
      Convection From Gases and Liquids to a Circular Cylinder in Crossflow",
      ASME. J. Heat Transfer. May 1977; 99(2): 300.
    * Incropera, Frank P., and David P. De Witt. "Fundamentals of heat and
      mass transfer", 4th edition, 1996, p. 370.

    Parameters
    ----------
    Re : float
        Reynolds number.
    Pr : float
        Prandtl number.

    Returns
    -------
    float
        Nusselt number.

    See also
    --------
    * [`Nu_bank_tubes`](Nu_bank_tubes.md): specific method for a bank of tubes.

    Examples
    --------
    Estimate the external heat transfer coefficient for water flowing at 2 m/s
    across a DN25 pipe.
    >>> from polykin.transport.heat import Nu_cylinder
    >>> rho = 1e3   # kg/m³
    >>> mu = 1e-3   # Pa.s
    >>> cp = 4.2e3  # J/kg/K
    >>> k = 0.6     # W/m/K
    >>> v = 2.      # m/s
    >>> D = 33.7e-3 # m (OD from pipe chart)
    >>> Re = rho*v*D/mu
    >>> Pr = cp*mu/k
    >>> Nu = Nu_cylinder(Re, Pr)
    >>> h = Nu*k/D
    >>> print(f"h={h:.1e} W/m².K")
    h=7.0e+03 W/m².K
    """
    check_range_warn(Re*Pr, 0.2, inf, 'Re*Pr')

    return 0.3 + 0.62*Re**(1/2)*Pr**(1/3)/(1 + (0.4/Pr)**(2/3))**(1/4) \
        * (1 + (Re/282e3)**(5/8))**(4/5)

Graphical Illustration¤

Nu_cylinder