Skip to content

polykin.transport.heat¤

Nu_bank_tubes ¤

Nu_bank_tubes(
    v: float,
    rho: float,
    mu: float,
    Pr: float,
    Prs: float,
    aligned: bool,
    D: float,
    ST: float,
    SL: float,
    NL: int,
) -> float

Calculate the Nusselt number for cross flow over a bank of tubes.

For flow across a bank of aligned or staggered tubes, the average Nusselt number \(\overline{Nu}=\bar{h}D/k\) is estimated by the following expression:

\[ \overline{Nu} = C_2 C Re_{max}^m Pr^{0.36} \left(\frac{Pr}{Pr_s} \right)^{1/4} \]

where \(Re_{max}\) is the Reynolds number based on the maximum fluid velocity within the bank of tubes, and \(Pr\) is the Prandtl number. Additionally, \(C_2\), \(C\) and \(m\) are tabulated constants that depend on the tube bundle configuration.

References

  • Žukauskas, Algirdas. "Heat transfer from tubes in crossflow", Advances in heat transfer. Vol. 8. Elsevier, 1972. 93-160.
  • Incropera, Frank P., and David P. De Witt. "Fundamentals of heat and mass transfer", 4th edition, 1996, p. 376-381.
PARAMETER DESCRIPTION
v

Nominal velocity outside the tube bank, \(v_{\infty}\) (m/s).

TYPE: float

rho

Density (kg/m³).

TYPE: float

mu

Viscosity (Pa·s).

TYPE: float

Pr

Prandtl number.

TYPE: float

Prs

Prandtl number at the surface of the tubes.

TYPE: float

aligned

Aligned or staggered tubes.

TYPE: bool

D

Diameter (m).

TYPE: float

ST

Transversal pitch (m).

TYPE: float

SL

Longitudinal pitch (m).

TYPE: float

NL

Number of rows of tubes.

TYPE: int

RETURNS DESCRIPTION
float

Average Nusselt number of the tube bank.

See also
  • Nu_tube: specific method for a single tube.
Source code in src/polykin/transport/heat.py
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
def Nu_bank_tubes(v: float,
                  rho: float,
                  mu: float,
                  Pr: float,
                  Prs: float,
                  aligned: bool,
                  D: float,
                  ST: float,
                  SL: float,
                  NL: int) -> float:
    r"""Calculate the Nusselt number for cross flow over a bank of tubes.

    For flow across a bank of aligned or staggered tubes, the average Nusselt
    number $\overline{Nu}=\bar{h}D/k$ is estimated by the following
    expression:

    $$ \overline{Nu} = 
        C_2 C Re_{max}^m Pr^{0.36} \left(\frac{Pr}{Pr_s} \right)^{1/4} $$

    where $Re_{max}$ is the Reynolds number based on the maximum fluid velocity
    within the bank of tubes, and $Pr$ is the Prandtl number. Additionally,
    $C_2$, $C$ and $m$ are tabulated constants that depend on the tube bundle
    configuration. 

    **References**

    * Žukauskas, Algirdas. "Heat transfer from tubes in crossflow", Advances
      in heat transfer. Vol. 8. Elsevier, 1972. 93-160.
    * Incropera, Frank P., and David P. De Witt. "Fundamentals of heat and
      mass transfer", 4th edition, 1996, p. 376-381.

    Parameters
    ----------
    v : float
        Nominal velocity outside the tube bank, $v_{\infty}$ (m/s).
    rho : float
        Density (kg/m³).
    mu : float
        Viscosity (Pa·s).
    Pr : float
        Prandtl number.
    Prs : float
        Prandtl number at the surface of the tubes.
    aligned : bool
        Aligned or staggered tubes.
    D : float
        Diameter (m).
    ST : float
        Transversal pitch (m).
    SL : float
        Longitudinal pitch (m).
    NL : int
        Number of rows of tubes.

    Returns
    -------
    float
        Average Nusselt number of the tube bank.

    See also
    --------
    * [`Nu_tube`](Nu_tube.md): specific method for a single tube.
    """

    # Maximum fluid velocity
    vmax = v * ST/(ST - D)
    if not aligned:
        SD = sqrt(SL**2 + (ST/2)**2)
        if SD < (ST + D)/2:
            vmax = v*ST/(2*(SD - D))

    Re_max = rho*vmax*D/mu

    check_range_warn(Re_max, 1e1, 2e6, 'Re_max')
    check_range_warn(Pr, 0.7, 500, 'Pr')

    # Nu for NL>=20
    if aligned:
        if Re_max < 1e2:
            C = 0.8
            m = 0.4
        elif Re_max >= 1e2 and Re_max < 1e3:
            C = 0.51
            m = 0.50
        elif Re_max >= 1e3 and Re_max < 2e5:
            C = 0.27
            m = 0.63
        else:
            C = 0.021
            m = 0.84
    else:
        if Re_max < 1e2:
            C = 0.9
            m = 0.4
        elif Re_max >= 1e2 and Re_max < 1e3:
            C = 0.51
            m = 0.50
        elif Re_max >= 1e3 and Re_max < 2e5:
            m = 0.60
            if ST/SL < 2:
                C = 0.35*(ST/SL)**0.2
            else:
                C = 0.40
        else:
            C = 0.022
            m = 0.84

    Nu = C * Re_max**m * Pr**0.36 * (Pr/Prs)**(1/4)

    # Correction for NL<20
    if NL < 20:
        if aligned:
            C2 = np.interp(
                NL,
                [1, 2, 3, 4, 5, 7, 10, 13, 16, 20],
                [0.70, 0.80, 0.86, 0.90, 0.92, 0.95, 0.97, 0.98, 0.99, 1.00])
        else:
            C2 = np.interp(
                NL,
                [1, 2, 3, 4, 5, 7, 10, 13, 16, 20],
                [0.64, 0.76, 0.84, 0.89, 0.92, 0.95, 0.97, 0.98, 0.99, 1.00])
    else:
        C2 = 1.

    return C2*Nu