polykin.transport.flow¤
vt_sphere ¤
vt_sphere(
D: float, rhop: float, rho: float, mu: float
) -> float
Calculate the terminal velocity of an isolated sphere in laminar or turbulent flow.
In both laminar and turbulent flow, the terminal velocity of an isolated sphere is given by:
where \(C_d\) is the drag coefficient. This implementation uses the drag correlation proposed by Turton and Levenspiel.
Tip
In laminar flow, \(v_t \propto D^2\), while in turbulent flow, \(v_t \propto D^{1/2}\).
References
- Turton, R., and O. Levenspiel. "A short note on the drag correlation for spheres", Powder technology 47.1 (1986): 83-86.
PARAMETER | DESCRIPTION |
---|---|
D
|
Particle diameter (m).
TYPE:
|
rhop
|
Particle density (kg/m³).
TYPE:
|
rho
|
Fluid density (kg/m³).
TYPE:
|
mu
|
Fluid viscosity (Pa·s).
TYPE:
|
RETURNS | DESCRIPTION |
---|---|
float
|
Terminal velocity (m/s). |
See also
Examples:
Calculate the terminal velocity of a 1 mm styrene droplet in air.
>>> from polykin.transport import vt_sphere
>>> vt = vt_sphere(1e-3, 910., 1.2, 1.6e-5)
>>> print(f"vt = {vt:.1f} m/s")
vt = 3.8 m/s
Source code in src/polykin/transport/flow.py
471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 |
|