Skip to content

polykin.transport.flow¤

vt_sphere ¤

vt_sphere(
    D: float, rhop: float, rho: float, mu: float
) -> float

Calculate the terminal velocity of an isolated sphere in laminar or turbulent flow.

In both laminar and turbulent flow, the terminal velocity of an isolated sphere is given by:

\[ v_t = \sqrt{\frac{4 D g (\rho_p - \rho)}{3 C_d \rho}} \]

where \(C_d\) is the drag coefficient. This implementation uses the drag correlation proposed by Turton and Levenspiel.

Tip

In laminar flow, \(v_t \propto D^2\), while in turbulent flow, \(v_t \propto D^{1/2}\).

References

  • Turton, R., and O. Levenspiel. "A short note on the drag correlation for spheres", Powder technology 47.1 (1986): 83-86.
PARAMETER DESCRIPTION
D

Particle diameter (m).

TYPE: float

rhop

Particle density (kg/m³).

TYPE: float

rho

Fluid density (kg/m³).

TYPE: float

mu

Fluid viscosity (Pa·s).

TYPE: float

RETURNS DESCRIPTION
float

Terminal velocity (m/s).

See also
  • vt_Stokes: specific method for laminar flow.
  • Cd_sphere: related method to estimate the drag coefficient.

Examples:

Calculate the terminal velocity of a 1 mm styrene droplet in air.

>>> from polykin.transport import vt_sphere
>>> vt = vt_sphere(1e-3, 910., 1.2, 1.6e-5)
>>> print(f"vt = {vt:.1f} m/s")
vt = 3.8 m/s
Source code in src/polykin/transport/flow.py
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
def vt_sphere(D: float,
              rhop: float,
              rho: float,
              mu: float
              ) -> float:
    r"""Calculate the terminal velocity of an isolated sphere in laminar or
    turbulent flow.

    In both laminar and turbulent flow, the terminal velocity of an isolated
    sphere is given by:

    $$ v_t = \sqrt{\frac{4 D g (\rho_p - \rho)}{3 C_d \rho}} $$

    where $C_d$ is the drag coefficient. This implementation uses the drag
    correlation proposed by Turton and Levenspiel.

    !!! tip

        In laminar flow, $v_t \propto D^2$, while in turbulent flow, 
        $v_t \propto D^{1/2}$.

    **References**

    * Turton, R., and O. Levenspiel. "A short note on the drag correlation for
      spheres", Powder technology 47.1 (1986): 83-86.

    Parameters
    ----------
    D : float
        Particle diameter (m).
    rhop : float
        Particle density (kg/m³).
    rho : float
        Fluid density (kg/m³).
    mu : float
        Fluid viscosity (Pa·s).

    Returns
    -------
    float
        Terminal velocity (m/s).

    See also
    --------
    * [`vt_Stokes`](vt_Stokes.md): specific method for laminar flow.
    * [`Cd_sphere`](Cd_sphere.md): related method to estimate the drag
      coefficient.

    Examples
    --------
    Calculate the terminal velocity of a 1 mm styrene droplet in air.
    >>> from polykin.transport import vt_sphere
    >>> vt = vt_sphere(1e-3, 910., 1.2, 1.6e-5)
    >>> print(f"vt = {vt:.1f} m/s")
    vt = 3.8 m/s
    """

    def fnc(vt):
        Re = rho*vt*D/mu
        Cd = Cd_sphere(Re)
        return vt - sqrt(4*D*g*(rhop - rho)/(3*Cd*rho))

    sol = fzero_newton(fnc, x0=1.)

    return sol.x