polykin.transport.flow¤
vt_Stokes ¤
vt_Stokes(
D: float, rhop: float, rho: float, mu: float
) -> float
Calculate the terminal velocity of an isolated sphere using Stokes' law.
In laminar flow (\(Re \lesssim 0.1\)), the terminal velocity of an isolated particle is given by:
where \(D\) is the particle diameter, \(g\) is the acceleration due to gravity, \(\rho_p\) is the particle density, \(\rho\) is the fluid density, and \(\mu\) is the fluid viscosity.
PARAMETER | DESCRIPTION |
---|---|
D
|
Particle diameter (m).
TYPE:
|
rhop
|
Particle density (kg/m³).
TYPE:
|
rho
|
Fluid density (kg/m³).
TYPE:
|
mu
|
Fluid viscosity (Pa·s).
TYPE:
|
RETURNS | DESCRIPTION |
---|---|
float
|
Terminal velocity (m/s). |
See also
vt_sphere
: generic method for laminar and turbulent flow.
Examples:
Calculate the terminal velocity of a 500 nm PVC particle in water.
>>> from polykin.transport import vt_Stokes
>>> vt = vt_Stokes(500e-9, 1.4e3, 1e3, 1e-3)
>>> print(f"vt = {vt:.1e} m/s")
vt = 5.4e-08 m/s
Source code in src/polykin/transport/flow.py
439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 |
|