polykin.transport.flow¤
fD_Colebrook ¤
fD_Colebrook(Re: float, er: float) -> float
Calculate the Darcy friction factor using Colebrook's equation.
For turbulent flow, i.e., \(Re \gtrsim 2300\), the friction factor is given by the following implicit expression:
\[ \frac{1}{\sqrt{f}}= -2 \log \left( \frac {\epsilon/D} {3.7} +
\frac {2.51} {Re \sqrt{f}} \right) \]
This equation is a historical landmark but has the disadvantage of being implicit, requiring an iterative solution.
References
- Colebrook, C F (1939). "Turbulent Flow in Pipes, with Particular Reference to the Transition Region Between the Smooth and Rough Pipe Laws", Journal of the Institution of Civil Engineers. 11 (4): 133-156.
PARAMETER | DESCRIPTION |
---|---|
Re
|
Reynolds number.
TYPE:
|
er
|
Relative pipe roughness, \(\epsilon/D\).
TYPE:
|
RETURNS | DESCRIPTION |
---|---|
float
|
Darcy friction factor. |
See also
fD_Haaland
: alternative method.
Examples:
Calculate the friction factor for water flowing at 2 m/s through a PVC pipe with an internal diameter of 25 mm.
>>> from polykin.transport.flow import fD_Colebrook
>>> rho = 1e3 # kg/m³
>>> mu = 1e-3 # Pa·s
>>> D = 25e-3 # m
>>> v = 2. # m/s
>>> Re = rho*v*D/mu
>>> er = 0.0015/25 # from pipe table
>>> fD = fD_Colebrook(Re, er)
>>> print(f"fD = {fD:.3f}")
fD = 0.021
Source code in src/polykin/transport/flow.py
259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 |
|