polykin.transport.flow¤
DP_tube ¤
DP_tube(
Q: float,
D: float,
L: float,
rho: float,
mu: float,
er: float = 0.0,
) -> float
Calculate the pressure drop due to friction for flow through a circular pipe.
This method acts as a convenience wrapper for
DP_Darcy_Weisbach
. It determines the flow regime
and estimates the Darcy friction factor using the appropriate equation. For
laminar flow, it applies \(f_D=64/Re\). For turbulent flow, it uses
fD_Haaland
. Finally, the method calls
DP_Darcy_Weisbach
with the correct parameters.
Tip
In laminar flow, \(\Delta P \propto Q/D^4\), while in turbulent flow, \(\Delta P \propto Q^2/D^5\).
PARAMETER | DESCRIPTION |
---|---|
Q
|
Volume flowrate (m³/s).
TYPE:
|
D
|
Diameter (m).
TYPE:
|
L
|
Length (m).
TYPE:
|
rho
|
Density (kg/m³).
TYPE:
|
mu
|
Viscosity (Pa·s).
TYPE:
|
er
|
Relative pipe roughness, \(\epsilon/D\). Only required for turbulent flow.
TYPE:
|
RETURNS | DESCRIPTION |
---|---|
float
|
Pressure drop (Pa). |
Examples:
Calculate the pressure drop for water flowing at 3 m³/h through 500 m of PVC pipe with an internal diameter of 25 mm.
>>> from polykin.transport import DP_tube
>>> Q = 3.0/3600 # m³/s
>>> rho = 1e3 # kg/m³
>>> mu = 1e-3 # Pa·s
>>> L = 5e2 # m
>>> D = 25e-3 # m
>>> er = 0.0015e-3/D # from pipe table
>>> DP = DP_tube(Q, D, L, rho, mu, er)
>>> print(f"DP = {DP:.1e} Pa")
DP = 6.2e+05 Pa
Source code in src/polykin/transport/flow.py
149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 |
|