Skip to content

polykin.transport.flow¤

DP_packed_bed ¤

DP_packed_bed(
    G: float,
    L: float,
    Dp: float,
    eps: float,
    rho: float,
    mu: float,
) -> float

Calculate the pressure drop in a packed bed.

The pressure drop in a packed bed is given by:

\[ \Delta P = \frac{G^2 (1 - \epsilon) f_p}{\rho D_p \epsilon^3} L \]

where \(G\) is the mass flux, \(D_p\) is the particle diameter, \(\epsilon\) is the bed porosity, \(L\) is the packed bed length, and \(\rho\) is the fluid density. The packing friction factor \(f_p\) is estimated using the Sato and Tallmadge correlation:

\[ f_p = \frac{150}{Re_p} + \frac{4.2}{Re_p^{1/6}} \]

where \(Re_p=D_p G/(\mu (1-\epsilon))\) is the packing Reynolds number.

References

  • Walas, S. M., "Chemical Process Equipment: Selection and Design", Singapore: Butterworths, 1988.
PARAMETER DESCRIPTION
G

Mass flux (kg/m²·s).

TYPE: float

L

Packed bed length (m).

TYPE: float

Dp

Particle diameter (m).

TYPE: float

eps

Bed porosity.

TYPE: float

rho

Fluid density (kg/m³).

TYPE: float

mu

Fluid viscosity (Pa·s).

TYPE: float

RETURNS DESCRIPTION
float

Pressure drop (Pa).

Examples:

Calculate the pressure drop in a packed bed reactor under the conditions specified below.

>>> from polykin.transport import DP_packed_bed
>>> DP = DP_packed_bed(G=50., L=2., Dp=1e-2, eps=0.45, rho=800., mu=0.01)
>>> print(f"DP = {DP:.1e} Pa")
DP = 1.4e+04 Pa
Source code in src/polykin/transport/flow.py
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
def DP_packed_bed(G: float,
                  L: float,
                  Dp: float,
                  eps: float,
                  rho: float,
                  mu: float
                  ) -> float:
    r"""Calculate the pressure drop in a packed bed.

    The pressure drop in a packed bed is given by:

    $$ \Delta P = \frac{G^2 (1 - \epsilon) f_p}{\rho D_p \epsilon^3} L $$

    where $G$ is the mass flux, $D_p$ is the particle diameter, $\epsilon$ is
    the bed porosity, $L$ is the packed bed length, and $\rho$ is the fluid
    density. The packing friction factor $f_p$ is estimated using the Sato and
    Tallmadge correlation:

    $$ f_p = \frac{150}{Re_p} + \frac{4.2}{Re_p^{1/6}} $$

    where $Re_p=D_p G/(\mu (1-\epsilon))$ is the packing Reynolds
    number.

    **References**

    * Walas, S. M., "Chemical Process Equipment: Selection and Design",
      Singapore: Butterworths, 1988.

    Parameters
    ----------
    G : float
        Mass flux (kg/m²·s).
    L : float
        Packed bed length (m).
    Dp : float
        Particle diameter (m).
    eps : float
        Bed porosity.
    rho : float
        Fluid density (kg/m³).
    mu : float
        Fluid viscosity (Pa·s).

    Returns
    -------
    float
        Pressure drop (Pa).

    Examples
    --------
    Calculate the pressure drop in a packed bed reactor under the conditions
    specified below.
    >>> from polykin.transport import DP_packed_bed
    >>> DP = DP_packed_bed(G=50., L=2., Dp=1e-2, eps=0.45, rho=800., mu=0.01)
    >>> print(f"DP = {DP:.1e} Pa")
    DP = 1.4e+04 Pa
    """
    Rep = Dp*G/(mu*(1 - eps))
    fp = 150/Rep + 4.2/Rep**(1/6)
    return G**2*(1 - eps)*fp*L/(rho*Dp*eps**3)