polykin.transport.flow¤
DP_GL_Mueller_Bonn ¤
DP_GL_Mueller_Bonn(
mdotL: float,
mdotG: float,
D: float,
L: float,
rhoL: float,
rhoG: float,
muL: float,
muG: float,
) -> float
Calculate the pressure drop due to friction in two-phase liquid-gas flow through a horizontal pipe using the Mueller-Bonn correlation.
According to the authors, this correlation performs better than the classical Lockhart-Martinelli correlation, but the average error is still 40%.
References
- Müller-Steinhagen, H., Heck, K. "A simple friction pressure drop correlation for two-phase flow in pipes." Chemical Engineering and Processing: Process Intensification 20.6 (1986): 297-308.
PARAMETER | DESCRIPTION |
---|---|
mdotL
|
Mass flow rate of liquid (kg/s).
TYPE:
|
mdotG
|
Mass flow rate of gas (kg/s).
TYPE:
|
D
|
Diameter (m).
TYPE:
|
L
|
Length (m).
TYPE:
|
rhoL
|
Density of liquid (kg/m³).
TYPE:
|
rhoG
|
Density of gas (kg/m³).
TYPE:
|
muL
|
Viscosity of liquid (Pa·s).
TYPE:
|
muG
|
Viscosity of gas (Pa·s).
TYPE:
|
RETURNS | DESCRIPTION |
---|---|
float
|
Pressure drop (Pa). |
See also
DP_GL_Lockhart_Martinelli
: alternative method.
Examples:
Calculate the pressure gradient due to friction in a 80 mm inner diameter pipe with 2 kg/s of liquid and 1 kg/s of gas. The liquid and gas have densities of 1000 and 1 kg/m³, respectively, and viscosities of 1e-3 and 2e-5 Pa·s, respectively.
>>> from polykin.transport import DP_GL_Mueller_Bonn
>>> mdotL = 2.0 # kg/s
>>> mdotG = 1.0 # kg/s
>>> D = 80e-3 # m
>>> L = 1.0 # m
>>> rhoL = 1e3 # kg/m³
>>> rhoG = 1e0 # kg/m³
>>> muL = 1e-3 # Pa·s
>>> muG = 2e-5 # Pa·s
>>> DP = DP_GL_Mueller_Bonn(mdotL, mdotG, D, L, rhoL, rhoG, muL, muG)
>>> print(f"DP = {DP:.1e} Pa/m")
DP = 1.1e+04 Pa/m
Source code in src/polykin/transport/flow.py
677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 |
|