Skip to content

polykin.transport.flow¤

DP_GL_Mueller_Bonn ¤

DP_GL_Mueller_Bonn(
    mdotL: float,
    mdotG: float,
    D: float,
    L: float,
    rhoL: float,
    rhoG: float,
    muL: float,
    muG: float,
) -> float

Calculate the pressure drop due to friction in two-phase liquid-gas flow through a horizontal pipe using the Mueller-Bonn correlation.

According to the authors, this correlation performs better than the classical Lockhart-Martinelli correlation, but the average error is still 40%.

References

  • Müller-Steinhagen, H., Heck, K. "A simple friction pressure drop correlation for two-phase flow in pipes." Chemical Engineering and Processing: Process Intensification 20.6 (1986): 297-308.
PARAMETER DESCRIPTION
mdotL

Mass flow rate of liquid (kg/s).

TYPE: float

mdotG

Mass flow rate of gas (kg/s).

TYPE: float

D

Diameter (m).

TYPE: float

L

Length (m).

TYPE: float

rhoL

Density of liquid (kg/m³).

TYPE: float

rhoG

Density of gas (kg/m³).

TYPE: float

muL

Viscosity of liquid (Pa·s).

TYPE: float

muG

Viscosity of gas (Pa·s).

TYPE: float

RETURNS DESCRIPTION
float

Pressure drop (Pa).

See also

Examples:

Calculate the pressure gradient due to friction in a 80 mm inner diameter pipe with 2 kg/s of liquid and 1 kg/s of gas. The liquid and gas have densities of 1000 and 1 kg/m³, respectively, and viscosities of 1e-3 and 2e-5 Pa·s, respectively.

>>> from polykin.transport import DP_GL_Mueller_Bonn
>>> mdotL = 2.0 # kg/s
>>> mdotG = 1.0 # kg/s 
>>> D = 80e-3   # m
>>> L = 1.0     # m
>>> rhoL = 1e3  # kg/m³
>>> rhoG = 1e0  # kg/m³
>>> muL = 1e-3  # Pa·s
>>> muG = 2e-5  # Pa·s 
>>> DP = DP_GL_Mueller_Bonn(mdotL, mdotG, D, L, rhoL, rhoG, muL, muG)
>>> print(f"DP = {DP:.1e} Pa/m")
DP = 1.1e+04 Pa/m
Source code in src/polykin/transport/flow.py
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
def DP_GL_Mueller_Bonn(mdotL: float,
                       mdotG: float,
                       D: float,
                       L: float,
                       rhoL: float,
                       rhoG: float,
                       muL: float,
                       muG: float
                       ) -> float:
    r"""Calculate the pressure drop due to friction in two-phase liquid-gas
    flow through a horizontal pipe using the Mueller-Bonn correlation.

    According to the authors, this correlation performs better than the
    classical Lockhart-Martinelli correlation, but the average error is still
    40%.

    **References**

    * Müller-Steinhagen, H., Heck, K. "A simple friction pressure drop
      correlation for two-phase flow in pipes." Chemical Engineering and
      Processing: Process Intensification 20.6 (1986): 297-308.

    Parameters
    ----------
    mdotL : float
        Mass flow rate of liquid (kg/s).
    mdotG : float
        Mass flow rate of gas (kg/s).
    D : float
        Diameter (m).
    L : float
        Length (m).
    rhoL : float
        Density of liquid (kg/m³).
    rhoG : float
        Density of gas (kg/m³).
    muL : float
        Viscosity of liquid (Pa·s).
    muG : float
        Viscosity of gas (Pa·s).

    Returns
    -------
    float
        Pressure drop (Pa).

    See also
    --------
    * [`DP_GL_Lockhart_Martinelli`](DP_GL_Lockhart_Martinelli.md): alternative
      method.

    Examples
    --------
    Calculate the pressure gradient due to friction in a 80 mm inner diameter
    pipe with 2 kg/s of liquid and 1 kg/s of gas. The liquid and gas have
    densities of 1000 and 1 kg/m³, respectively, and viscosities of 1e-3 and
    2e-5 Pa·s, respectively. 
    >>> from polykin.transport import DP_GL_Mueller_Bonn
    >>> mdotL = 2.0 # kg/s
    >>> mdotG = 1.0 # kg/s 
    >>> D = 80e-3   # m
    >>> L = 1.0     # m
    >>> rhoL = 1e3  # kg/m³
    >>> rhoG = 1e0  # kg/m³
    >>> muL = 1e-3  # Pa·s
    >>> muG = 2e-5  # Pa·s 
    >>> DP = DP_GL_Mueller_Bonn(mdotL, mdotG, D, L, rhoL, rhoG, muL, muG)
    >>> print(f"DP = {DP:.1e} Pa/m")
    DP = 1.1e+04 Pa/m
    """

    # Flow quality and mass flux
    mdot = mdotL + mdotG
    x = mdotG/mdot
    vm = mdot/((pi/4)*D**2)

    # Pressure gradient if total flow had liquid properties
    ReL = vm*D/muL
    fL = 64/ReL if ReL <= 1187.0 else 0.3164/ReL**0.25
    dPL0 = fL*vm**2/(2*rhoL*D)

    # Pressure gradient if total flow had gas properties
    ReG = vm*D/muG
    fG = 64/ReG if ReG <= 1187.0 else 0.3164/ReG**0.25
    dPG0 = fG*vm**2/(2*rhoG*D)

    # Two-phase pressure gradient
    dP = (dPL0 + 2*(dPG0 - dPL0)*x)*(1 - x)**(1/3) + dPG0*x**3
    DP = dP*L

    return DP