Skip to content

polykin.transport.flow¤

DP_GL_Lockhart_Martinelli ¤

DP_GL_Lockhart_Martinelli(
    mdotL: float,
    mdotG: float,
    D: float,
    L: float,
    rhoL: float,
    rhoG: float,
    muL: float,
    muG: float,
    er: float,
) -> float

Calculate the pressure drop due to friction in two-phase liquid-gas flow through a horizontal pipe using the Lockhart-Martinelli correlation.

The pressure drop due to friction in a two-phase flow is estimated by:

\[ (\Delta P)_{TP} = (\Delta P)_{L} \phi^2_{L} \]

where \((\Delta P)_{L}\) is the pressure drop if the liquid phase were alone, and \(\phi_{L}\) is the liquid-phase multiplier. The latter is given by:

\[ \phi_{L} = 1 + \frac{C}{X} + \frac{1}{X^2} \]

where \(X=\sqrt{(\Delta P)_L/(\Delta P)_G}\) is the Lockhart-Martinelli parameter and \(C\) is a coefficient that varies based on the flow regimes of the liquid and gas phases.

References

  • Walas, S. M., "Chemical Process Equipment: Selection and Design", Singapore: Butterworths, 1988.
PARAMETER DESCRIPTION
mdotL

Mass flow rate of liquid (kg/s).

TYPE: float

mdotG

Mass flow rate of gas (kg/s).

TYPE: float

D

Diameter (m).

TYPE: float

L

Length (m).

TYPE: float

rhoL

Density of liquid (kg/m³).

TYPE: float

rhoG

Density of gas (kg/m³).

TYPE: float

muL

Viscosity of liquid (Pa·s).

TYPE: float

muG

Viscosity of gas (Pa·s).

TYPE: float

er

Relative pipe roughness, \(\epsilon/D\). Only required for turbulent flow.

TYPE: float

RETURNS DESCRIPTION
float

Pressure drop (Pa).

See also

Examples:

Calculate the pressure gradient due to friction in a 80 mm inner diameter pipe with 2 kg/s of liquid and 1 kg/s of gas. The liquid and gas have densities of 1000 and 1 kg/m³, respectively, and viscosities of 1e-3 and 2e-5 Pa·s, respectively.

>>> from polykin.transport import DP_GL_Lockhart_Martinelli
>>> mdotL = 2.0 # kg/s
>>> mdotG = 1.0 # kg/s 
>>> D = 80e-3   # m
>>> L = 1.0     # m
>>> rhoL = 1e3  # kg/m³
>>> rhoG = 1e0  # kg/m³
>>> muL = 1e-3  # Pa·s
>>> muG = 2e-5  # Pa·s
>>> er = 0.0    
>>> DP = DP_GL_Lockhart_Martinelli(mdotL, mdotG, D, L, rhoL, rhoG, muL, muG, er)
>>> print(f"DP = {DP:.1e} Pa/m")
DP = 8.2e+03 Pa/m
Source code in src/polykin/transport/flow.py
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
def DP_GL_Lockhart_Martinelli(mdotL: float,
                              mdotG: float,
                              D: float,
                              L: float,
                              rhoL: float,
                              rhoG: float,
                              muL: float,
                              muG: float,
                              er: float
                              ) -> float:
    r"""Calculate the pressure drop due to friction in two-phase liquid-gas
    flow through a horizontal pipe using the Lockhart-Martinelli correlation.

    The pressure drop due to friction in a two-phase flow is estimated by:

    $$ (\Delta P)_{TP} = (\Delta P)_{L} \phi^2_{L} $$

    where $(\Delta P)_{L}$ is the pressure drop if the liquid phase were alone,
    and $\phi_{L}$ is the liquid-phase multiplier. The latter is given by:

    $$ \phi_{L} = 1 + \frac{C}{X} + \frac{1}{X^2} $$

    where $X=\sqrt{(\Delta P)_L/(\Delta P)_G}$ is the Lockhart-Martinelli
    parameter and $C$ is a coefficient that varies based on the flow regimes of
    the liquid and gas phases.

    **References**

    * Walas, S. M., "Chemical Process Equipment: Selection and Design",
      Singapore: Butterworths, 1988.

    Parameters
    ----------
    mdotL : float
        Mass flow rate of liquid (kg/s).
    mdotG : float
        Mass flow rate of gas (kg/s).
    D : float
        Diameter (m).
    L : float
        Length (m).
    rhoL : float
        Density of liquid (kg/m³).
    rhoG : float
        Density of gas (kg/m³).
    muL : float
        Viscosity of liquid (Pa·s).
    muG : float
        Viscosity of gas (Pa·s).
    er : float
        Relative pipe roughness, $\epsilon/D$. Only required for turbulent flow.

    Returns
    -------
    float
        Pressure drop (Pa).

    See also
    --------
    * [`DP_GL_Mueller_Bonn`](DP_GL_Mueller_Bonn.md): alternative method.

    Examples
    --------
    Calculate the pressure gradient due to friction in a 80 mm inner diameter
    pipe with 2 kg/s of liquid and 1 kg/s of gas. The liquid and gas have
    densities of 1000 and 1 kg/m³, respectively, and viscosities of 1e-3 and
    2e-5 Pa·s, respectively. 
    >>> from polykin.transport import DP_GL_Lockhart_Martinelli
    >>> mdotL = 2.0 # kg/s
    >>> mdotG = 1.0 # kg/s 
    >>> D = 80e-3   # m
    >>> L = 1.0     # m
    >>> rhoL = 1e3  # kg/m³
    >>> rhoG = 1e0  # kg/m³
    >>> muL = 1e-3  # Pa·s
    >>> muG = 2e-5  # Pa·s
    >>> er = 0.0    
    >>> DP = DP_GL_Lockhart_Martinelli(mdotL, mdotG, D, L, rhoL, rhoG, muL, muG, er)
    >>> print(f"DP = {DP:.1e} Pa/m")
    DP = 8.2e+03 Pa/m
    """

    # Pressure gradient if liquid were alone
    A = (pi/4)*D**2
    if mdotL > 0.0:
        vL = mdotL/(A*rhoL)
        ReL = rhoL*vL*D/muL
        fL = 64/ReL if ReL < 2.3e3 else fD_Haaland(ReL, er)
        dPL = DP_Darcy_Weisbach(vL, D, 1.0, rhoL, fL)
    else:
        dPL = 0.0

    # Pressure gradient if gas were alone
    if mdotG > 0.0:
        vG = mdotG/(A*rhoG)
        ReG = rhoG*vG*D/muG
        fG = 64/ReG if ReG < 2.3e3 else fD_Haaland(ReG, er)
        dPG = DP_Darcy_Weisbach(vG, D, 1.0, rhoG, fG)
    else:
        dPG = 0.0

    # Two-phase pressure drop
    if not dPG:
        dP = dPL
    elif not dPL:
        dP = dPG
    else:
        X = sqrt(dPL/dPG)
        if ReL > 1e3:
            C = 20.0 if ReG > 1e3 else 10.0
        else:
            C = 12.0 if ReG > 1e3 else 5.0
        YL = 1 + C/X + 1/X**2
        dP = YL*dPL
    DP = dP*L

    return DP