polykin.transport.flow¤
Cd_sphere ¤
Cd_sphere(Re: float) -> float
Calculate the drag coefficient of an isolated sphere.
For laminar as well as for turbulent flow, the drag coefficient is given by:
\[ C_{d} = \frac{24}{Re} \left(1 + 0.173 Re^{0.657}\right)
+ \frac{0.413}{1 + 16300 Re^{-1.09}} \]
where \(Re\) is the particle Reynolds number.
References
- Turton, R., and O. Levenspiel. "A short note on the drag correlation for spheres", Powder technology 47.1 (1986): 83-86.
PARAMETER | DESCRIPTION |
---|---|
Re
|
Particle Reynolds number.
TYPE:
|
RETURNS | DESCRIPTION |
---|---|
float
|
Drag coefficient for an isolated sphere. |
See also
vt_sphere
: related method to estimate the terminal velocity.
Examples:
Calculate the drag coefficient for a tennis ball traveling at 30 m/s.
>>> from polykin.transport import Cd_sphere
>>> D = 6.7e-2 # m
>>> mu = 1.6e-5 # Pa·s
>>> rho = 1.2 # kg/m³
>>> v = 30. # m/s
>>> Re = rho*v*D/mu
>>> Cd = Cd_sphere(Re)
>>> print(f"Cd = {Cd:.2f}")
Cd = 0.47
Source code in src/polykin/transport/flow.py
372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 |
|