Skip to content

polykin.transport.flow¤

Cd_sphere ¤

Cd_sphere(Re: float) -> float

Calculate the drag coefficient of an isolated sphere.

For laminar as well as for turbulent flow, the drag coefficient is given by:

\[ C_{d} = \frac{24}{Re} \left(1 + 0.173 Re^{0.657}\right) + \frac{0.413}{1 + 16300 Re^{-1.09}} \]

where \(Re\) is the particle Reynolds number.

References

  • Turton, R., and O. Levenspiel. "A short note on the drag correlation for spheres", Powder technology 47.1 (1986): 83-86.
PARAMETER DESCRIPTION
Re

Particle Reynolds number.

TYPE: float

RETURNS DESCRIPTION
float

Drag coefficient for an isolated sphere.

See also
  • vt_sphere: related method to estimate the terminal velocity.

Examples:

Calculate the drag coefficient for a tennis ball traveling at 30 m/s.

>>> from polykin.transport import Cd_sphere
>>> D = 6.7e-2  # m
>>> mu = 1.6e-5 # Pa·s
>>> rho = 1.2   # kg/m³
>>> v = 30.     # m/s
>>> Re = rho*v*D/mu
>>> Cd = Cd_sphere(Re)
>>> print(f"Cd = {Cd:.2f}")
Cd = 0.47
Source code in src/polykin/transport/flow.py
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
def Cd_sphere(Re: float) -> float:
    r"""Calculate the drag coefficient of an isolated sphere.

    For laminar as well as for turbulent flow, the drag coefficient is given
    by:

    $$ C_{d} = \frac{24}{Re} \left(1 + 0.173 Re^{0.657}\right) 
             + \frac{0.413}{1 + 16300 Re^{-1.09}} $$

    where $Re$ is the particle Reynolds number.

    **References**

    * Turton, R., and O. Levenspiel. "A short note on the drag correlation for
      spheres", Powder technology 47.1 (1986): 83-86.

    Parameters
    ----------
    Re : float
        Particle Reynolds number.

    Returns
    -------
    float
        Drag coefficient for an isolated sphere. 

    See also
    --------
    * [`vt_sphere`](vt_sphere.md): related method to estimate the terminal
      velocity.

    Examples
    --------
    Calculate the drag coefficient for a tennis ball traveling at 30 m/s.
    >>> from polykin.transport import Cd_sphere
    >>> D = 6.7e-2  # m
    >>> mu = 1.6e-5 # Pa·s
    >>> rho = 1.2   # kg/m³
    >>> v = 30.     # m/s
    >>> Re = rho*v*D/mu
    >>> Cd = Cd_sphere(Re)
    >>> print(f"Cd = {Cd:.2f}")
    Cd = 0.47
    """
    return 24/Re*(1 + 0.173*Re**0.657) + 0.413/(1 + 16300*Re**(-1.09))

Graphical Illustration¤

Cd_sphere