polykin.transport.diffusion¤
uptake_convection_sphere ¤
uptake_convection_sphere(Fo: float, Bi: float) -> float
Fractional mass uptake for transient diffusion in a sphere subjected to a surface convection boundary condition.
For a sphere of radius \(a\), where the concentration is initially \(C_0\) everywhere, and the flux at the surface is:
the fractional mass uptake is:
where \(Fo = D t/a^2\) is the Fourier number, \(Bi = k a/D\) is the Biot number, and \(\beta_n\) are the positive roots of the transcendental equation \(1 - \beta \cot(\beta) = Bi\).
References
- J. Crank, "The mathematics of diffusion", Oxford University Press, 1975, p. 96.
PARAMETER | DESCRIPTION |
---|---|
Fo
|
Fourier number, \(D t/a^2\).
TYPE:
|
Bi
|
Biot number, \(k a/D\).
TYPE:
|
RETURNS | DESCRIPTION |
---|---|
float
|
Fractional mass uptake. |
See also
uptake_constc_sphere
: related method for constant surface concentration boundary condition.
Examples:
Determine the fractional mass uptake after 100 seconds for a polymer sphere with a radius of 0.1 mm, a diffusion coefficient of 1e-11 m²/s, and an external mass transfer coefficient of 1e-6 m/s.
>>> from polykin.transport import uptake_convection_sphere
>>> t = 1e2 # s
>>> a = 1e-4 # m
>>> D = 1e-11 # m²/s
>>> k = 1e-6 # m/s
>>> Fo = D*t/a**2
>>> Bi = k*a/D
>>> uptake_convection_sphere(Fo, Bi)
0.6539883120664335
Source code in src/polykin/transport/diffusion.py
427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 |
|