polykin.transport.diffusion¤
uptake_convection_sheet ¤
uptake_convection_sheet(Fo: float, Bi: float) -> float
Fractional mass uptake for transient diffusion in a plane sheet subjected to a surface convection boundary condition.
For a plane sheet of thickness \(2a\), with diffusion from both faces, where the concentration is initially \(C_0\) everywhere, and the flux at the surface is:
the fractional mass uptake is:
where \(Fo = D t/a^2\) is the Fourier number, \(Bi = k a/D\) is the Biot number, and \(\beta_n\) are the positive roots of the transcendental equation \(\beta \tan(\beta) = Bi\).
References
- J. Crank, "The mathematics of diffusion", Oxford University Press, 1975, p. 60.
PARAMETER | DESCRIPTION |
---|---|
Fo
|
Fourier number, \(D t/a^2\).
TYPE:
|
Bi
|
Biot number, \(k a/D\).
TYPE:
|
RETURNS | DESCRIPTION |
---|---|
float
|
Fractional mass uptake. |
See also
uptake_constc_sheet
: related method for constant surface concentration boundary condition.
Examples:
Determine the fractional mass uptake after 500 seconds for a polymer solution film with a thickness of 0.2 mm, a diffusion coefficient of 1e-11 m²/s, and an external mass transfer coefficient of 1e-6 m/s.
>>> from polykin.transport import uptake_convection_sheet
>>> t = 5e2 # s
>>> a = 2e-4 # m
>>> D = 1e-11 # m²/s
>>> k = 1e-6 # m/s
>>> Fo = D*t/a**2
>>> Bi = k*a/D
>>> uptake_convection_sheet(Fo, Bi)
0.3528861780625614
Source code in src/polykin/transport/diffusion.py
359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 |
|