polykin.transport.diffusion¤
uptake_constc_sphere ¤
uptake_constc_sphere(Fo: float) -> float
Fractional mass uptake for transient diffusion in a sphere subjected to a constant surface concentration boundary condition.
For a sphere of radius \(a\), where the concentration is initially \(C_0\) everywhere, and the surface concentration is maintained at \(C_s\), the fractional mass uptake is:
\[ \frac{\bar{C}-C_0}{C_s -C_0} =
1 - \frac{6}{\pi^2}\sum_{n=1}^{\infty}\frac{1}{n^2} \exp (-n^2 \pi^2 Fo) \]
where \(Fo = D t/a^2\) is the Fourier number.
References
- J. Crank, "The mathematics of diffusion", Oxford University Press, 1975, p. 91.
PARAMETER | DESCRIPTION |
---|---|
Fo
|
Fourier number, \(D t/a^2\).
TYPE:
|
RETURNS | DESCRIPTION |
---|---|
float
|
Fractional mass uptake. |
See also
profile_constc_sphere
: related method to determine the concentration profile.uptake_convection_sphere
: related method for surface convection boundary condition.
Examples:
Determine the fractional mass uptake after 100 seconds for a polymer sphere with a radius of 0.1 mm and a diffusion coefficient of 1e-11 m²/s.
>>> from polykin.transport import uptake_constc_sphere
>>> t = 1e2 # s
>>> a = 1e-4 # m
>>> D = 1e-11 # m²/s
>>> Fo = D*t/a**2
>>> uptake_constc_sphere(Fo)
0.7704787380259631
Source code in src/polykin/transport/diffusion.py
294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 |
|