Skip to content

polykin.transport.diffusion¤

uptake_constc_sheet ¤

uptake_constc_sheet(Fo: float) -> float

Fractional mass uptake for transient diffusion in a plane sheet subjected to a constant surface concentration boundary condition.

For a plane sheet of thickness \(2a\), with diffusion from both faces, where the concentration is initially \(C_0\) everywhere, and the concentration at both surfaces is maintained at \(C_s\), the fractional mass uptake is:

\[ \frac{\bar{C}-C_0}{C_s -C_0} = 1 - \frac{8}{\pi^2} \sum_{n=0}^{\infty}\frac{1}{(2n+1)^2} \exp\left[-\frac{(2n+1)^2 \pi^2}{4}Fo\right] \]

where \(Fo = D t/a^2\) is the Fourier number.

Tip

This equation is also applicable to a plane sheet of thickness \(a\) if one of the faces is sealed.

References

  • J. Crank, "The mathematics of diffusion", Oxford University Press, 1975, p. 48.
PARAMETER DESCRIPTION
Fo

Fourier number, \(D t/a^2\).

TYPE: float

RETURNS DESCRIPTION
float

Fractional mass uptake.

See also

Examples:

Determine the fractional mass uptake after 500 seconds for a polymer solution film with a thickness of 0.2 mm and a diffusion coefficient of 1e-11 m²/s.

>>> from polykin.transport import uptake_constc_sheet
>>> t = 5e2   # s
>>> a = 2e-4  # m
>>> D = 1e-11 # m²/s
>>> Fo = D*t/a**2
>>> uptake_constc_sheet(Fo)
0.39892798988456807
Source code in src/polykin/transport/diffusion.py
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
def uptake_constc_sheet(Fo: float) -> float:
    r"""Fractional mass uptake for transient diffusion in a plane sheet
    subjected to a constant surface concentration boundary condition. 

    For a plane sheet of thickness $2a$, with diffusion from _both_ faces, where
    the concentration is initially $C_0$ everywhere, and the concentration at
    both surfaces is maintained at $C_s$, the fractional mass uptake is:

    $$ \frac{\bar{C}-C_0}{C_s -C_0} = 
        1 - \frac{8}{\pi^2} \sum_{n=0}^{\infty}\frac{1}{(2n+1)^2}
        \exp\left[-\frac{(2n+1)^2 \pi^2}{4}Fo\right] $$

    where $Fo = D t/a^2$ is the Fourier number.

    !!! tip

        This equation is also applicable to a plane sheet of thickness $a$ if
        one of the faces is sealed.

    **References**

    * J. Crank, "The mathematics of diffusion", Oxford University Press, 1975,
      p. 48.

    Parameters
    ----------
    Fo : float
        Fourier number, $D t/a^2$.

    Returns
    -------
    float
        Fractional mass uptake.

    See also
    --------
    * [`profile_constc_sheet`](profile_constc_sheet.md): related method to
      determine the concentration profile.
    * [`uptake_convection_sheet`](uptake_convection_sheet.md): related method
      for surface convection boundary condition.

    Examples
    --------
    Determine the fractional mass uptake after 500 seconds for a polymer solution
    film with a thickness of 0.2 mm and a diffusion coefficient of 1e-11 m²/s.
    >>> from polykin.transport import uptake_constc_sheet
    >>> t = 5e2   # s
    >>> a = 2e-4  # m
    >>> D = 1e-11 # m²/s
    >>> Fo = D*t/a**2
    >>> uptake_constc_sheet(Fo)
    0.39892798988456807
    """
    N = 4  # Number of terms in series expansion (optimal value)

    if Fo == 0:
        result = 0
    elif Fo < 1/4:
        # Solution for small times
        A = sqrt(Fo)
        S = sum((-1 if n % 2 else 1) * ierfc(n/A) for n in range(1, N))
        result = 2*A * (1/sqrt(pi) + 2*S)
    else:
        # Solution for normal times
        B = -(Fo*pi**2)/4
        S = sum(1/(2*n + 1)**2 * exp(B*(2*n + 1)**2) for n in range(0, N-1))
        result = 1 - (8/pi**2)*S

    return result

Graphical Illustration¤

uptake_constc_sheet