polykin.transport.diffusion¤
uptake_constc_sheet ¤
uptake_constc_sheet(Fo: float) -> float
Fractional mass uptake for transient diffusion in a plane sheet subjected to a constant surface concentration boundary condition.
For a plane sheet of thickness \(2a\), with diffusion from both faces, where the concentration is initially \(C_0\) everywhere, and the concentration at both surfaces is maintained at \(C_s\), the fractional mass uptake is:
where \(Fo = D t/a^2\) is the Fourier number.
Tip
This equation is also applicable to a plane sheet of thickness \(a\) if one of the faces is sealed.
References
- J. Crank, "The mathematics of diffusion", Oxford University Press, 1975, p. 48.
PARAMETER | DESCRIPTION |
---|---|
Fo
|
Fourier number, \(D t/a^2\).
TYPE:
|
RETURNS | DESCRIPTION |
---|---|
float
|
Fractional mass uptake. |
See also
profile_constc_sheet
: related method to determine the concentration profile.uptake_convection_sheet
: related method for surface convection boundary condition.
Examples:
Determine the fractional mass uptake after 500 seconds for a polymer solution film with a thickness of 0.2 mm and a diffusion coefficient of 1e-11 m²/s.
>>> from polykin.transport import uptake_constc_sheet
>>> t = 5e2 # s
>>> a = 2e-4 # m
>>> D = 1e-11 # m²/s
>>> Fo = D*t/a**2
>>> uptake_constc_sheet(Fo)
0.39892798988456807
Source code in src/polykin/transport/diffusion.py
223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 |
|