polykin.transport.diffusion¤
profile_sheet ¤
profile_sheet(
t: float, x: float, a: float, D: float
) -> float
Concentration profile for transient diffusion in a plane sheet.
For a plane sheet of thickness \(2a\), with diffusion from both faces, where the concentration is initially \(C_0\) everywhere, and the concentration at both surfaces is maintained at \(C_s\), the normalized concentration is:
where \(x\) is the distance from the center of the sheet, \(t\) is the time, and \(D\) is the diffusion coefficient.
Tip
This equation is also applicable to a plane sheet of thickness \(a\) if one of the faces is sealed.
References
- J. Crank, "The mathematics of diffusion", Oxford University Press, 1975, p. 47.
PARAMETER | DESCRIPTION |
---|---|
t
|
Time (s).
TYPE:
|
x
|
Distance from the center or sealed face (m).
TYPE:
|
a
|
Half thickness of sheet (m).
TYPE:
|
D
|
Diffusion coefficient (m²/s).
TYPE:
|
RETURNS | DESCRIPTION |
---|---|
float
|
Fractional accomplished concentration change. |
See also
uptake_sheet
: related method to determine the mass uptake.
Examples:
Determine the fractional concentration change after 100 s in a 0.2 mm-thick polymer film (diffusivity: 1e-10 m²/s) at its maximum depth.
>>> from polykin.transport.diffusion import profile_sheet
>>> profile_sheet(t=1e2, x=0., a=0.2e-3, D=1e-10)
0.3145542331096479
Source code in src/polykin/transport/diffusion.py
64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 |
|
Graphical Illustration¤
The numbers in the legend are values of \(D t / a^2\).