polykin.thermo.eos¤
This module implements equations of state (EOS) for gas and liquid mixtures.
Virial ¤
Virial equation of state truncated to the second coefficient.
This EOS is based on the following \(P(v,T)\) relationship:
where \(P\) is the pressure, \(T\) is the temperature, \(v\) is the molar volume, \(B_m\) is the mixture second virial coefficient. The parameter \(B_m=B_m(T,y)\) is estimated based on the critical properties of the pure components and the mixture composition \(y\).
Important
This equation is an improvement over the ideal gas model, but it should only be used up to moderate pressures such that \(v/v_c > 2\).
References
- RC Reid, JM Prausniz, and BE Poling. The properties of gases & liquids 4th edition, 1986, p. 37, 40, 80, 82.
PARAMETER | DESCRIPTION |
---|---|
Tc
|
Critical temperatures of all components. Unit = K.
TYPE:
|
Pc
|
Critical pressures of all components. Unit = Pa.
TYPE:
|
Zc
|
Critical compressibility factors of all components.
TYPE:
|
w
|
Acentric factors of all components.
TYPE:
|
Source code in src/polykin/thermo/eos/virial.py
26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 |
|
Bij
cached
¤
Bij(T: float) -> FloatSquareMatrix
Calculate the matrix of interaction virial coefficients.
The calculation is handled by
B_mixture
.
PARAMETER | DESCRIPTION |
---|---|
T
|
Temperature. Unit = K.
TYPE:
|
RETURNS | DESCRIPTION |
---|---|
FloatSquareMatrix
|
Matrix of interaction virial coefficients, \(B_{ij}\). Unit = m³/mol. |
Source code in src/polykin/thermo/eos/virial.py
166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 |
|
Bm ¤
Bm(T: float, y: FloatVector) -> float
Calculate the second virial coefficient of the mixture.
References
- RC Reid, JM Prausniz, and BE Poling. The properties of gases & liquids 4th edition, 1986, p. 79.
PARAMETER | DESCRIPTION |
---|---|
T
|
Temperature. Unit = K.
TYPE:
|
y
|
Mole fractions of all components. Unit = mol/mol.
TYPE:
|
RETURNS | DESCRIPTION |
---|---|
float
|
Mixture second virial coefficient, \(B_m\). Unit = m³/mol. |
Source code in src/polykin/thermo/eos/virial.py
139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 |
|
DA ¤
DA(T, V, n, v0)
Calculate the departure of Helmholtz energy.
PARAMETER | DESCRIPTION |
---|---|
T
|
Temperature. Unit = K.
TYPE:
|
V
|
Volume. Unit = m³.
TYPE:
|
n
|
Mole amounts of all components. Unit = mol.
TYPE:
|
v0
|
Molar volume in reference state. Unit = m³/mol.
TYPE:
|
RETURNS | DESCRIPTION |
---|---|
FloatVector
|
Helmholtz energy departure, \(A - A^{\circ}\). Unit = J. |
Source code in src/polykin/thermo/eos/virial.py
228 229 230 231 232 |
|
P ¤
P(T: float, v: float, y: FloatVector) -> float
Calculate the pressure of the fluid.
PARAMETER | DESCRIPTION |
---|---|
T
|
Temperature. Unit = K.
TYPE:
|
v
|
Molar volume. Unit = m³/mol.
TYPE:
|
y
|
Mole fractions of all components. Unit = mol/mol.
TYPE:
|
RETURNS | DESCRIPTION |
---|---|
float
|
Pressure. Unit = Pa. |
Source code in src/polykin/thermo/eos/virial.py
115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 |
|
Z ¤
Z(T: float, P: float, y: FloatVector) -> float
Calculate the compressibility factor of the fluid.
where \(Z\) is the compressibility factor, \(P\) is the pressure, \(T\) is the temperature, and \(B_m=B_m(T,y)\) is the mixture second virial coefficient.
References
- RC Reid, JM Prausniz, and BE Poling. The properties of gases & liquids 4th edition, 1986, p. 37.
PARAMETER | DESCRIPTION |
---|---|
T
|
Temperature. Unit = K.
TYPE:
|
P
|
Pressure. Unit = Pa.
TYPE:
|
y
|
Mole fractions of all components. Unit = mol/mol.
TYPE:
|
RETURNS | DESCRIPTION |
---|---|
float
|
Compressibility factor of the fluid. |
Source code in src/polykin/thermo/eos/virial.py
80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 |
|
fV ¤
fV(T: float, P: float, y: FloatVector) -> FloatVector
Calculate the fugacity of all components in the vapor phase.
\(\hat{f}_i\) is the fugacity in the vapor phase, \(\hat{\phi}_i(T,P,y)\) is the fugacity coefficient, \(P\) is the pressure, and \(y_i\) is the mole fraction in the vapor phase.
PARAMETER | DESCRIPTION |
---|---|
T
|
Temperature. Unit = K.
TYPE:
|
P
|
Pressure. Unit = Pa.
TYPE:
|
y
|
Mole fractions of all components. Unit = mol/mol.
TYPE:
|
RETURNS | DESCRIPTION |
---|---|
FloatVector
|
Fugacity coefficients of all components. |
Source code in src/polykin/thermo/eos/base.py
56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 |
|
phiV ¤
phiV(T: float, P: float, y: FloatVector) -> FloatVector
Calculate the fugacity coefficients of all components in the vapor phase.
where \(\hat{\phi}_i\) is the fugacity coefficient, \(P\) is the pressure, \(T\) is the temperature, \(B_{ij}\) is the matrix of interaction virial coefficients, \(B_m\) is the second virial coefficient of the mixture, and \(y_i\) is the mole fraction in the vapor phase.
References
- RC Reid, JM Prausniz, and BE Poling. The properties of gases & liquids 4th edition, 1986, p. 145.
PARAMETER | DESCRIPTION |
---|---|
T
|
Temperature. Unit = K.
TYPE:
|
P
|
Pressure. Unit = Pa.
TYPE:
|
y
|
Mole fractions of all components. Unit = mol/mol.
TYPE:
|
RETURNS | DESCRIPTION |
---|---|
FloatVector
|
Fugacity coefficients of all components. |
Source code in src/polykin/thermo/eos/virial.py
188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 |
|
v ¤
v(T: float, P: float, y: FloatVector) -> float
Calculate the molar volume the fluid.
where \(v\) is the molar volue, \(Z\) is the compressibility factor, \(T\) is the temperature, \(P\) is the pressure, and \(y\) is the mole fraction vector.
PARAMETER | DESCRIPTION |
---|---|
T
|
Temperature. Unit = K.
TYPE:
|
P
|
Pressure. Unit = Pa.
TYPE:
|
y
|
Mole fractions of all components. Unit = mol/mol.
TYPE:
|
RETURNS | DESCRIPTION |
---|---|
float
|
Molar volume of the fluid. Unit = m³/mol. |
Source code in src/polykin/thermo/eos/base.py
230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 |
|
B_pure ¤
B_pure(
T: Union[float, FloatArray],
Tc: float,
Pc: float,
w: float,
) -> Union[float, FloatArray]
Estimate the second virial coefficient of a nonpolar or slightly polar gas.
where \(B\) is the second virial coefficient, \(P_c\) is the critical pressure, \(T_c\) is the critical temperature, \(T_r=T/T_c\) is the reduced temperature, and \(\omega\) is the acentric factor.
References
- RC Reid, JM Prausniz, and BE Poling. The properties of gases & liquids 4th edition, 1986, p. 40.
PARAMETER | DESCRIPTION |
---|---|
T
|
Temperature. Unit = K.
TYPE:
|
Tc
|
Critical temperature. Unit = K.
TYPE:
|
Pc
|
Critical pressure. Unit = Pa.
TYPE:
|
w
|
Acentric factor.
TYPE:
|
RETURNS | DESCRIPTION |
---|---|
float | FloatArray
|
Second virial coefficient, \(B\). Unit = m³/mol. |
Source code in src/polykin/thermo/eos/virial.py
237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 |
|
B_mixture ¤
B_mixture(
T: float,
Tc: FloatVector,
Pc: FloatVector,
Zc: FloatVector,
w: FloatVector,
) -> FloatSquareMatrix
Calculate the matrix of interaction virial coefficients using the mixing rules of Prausnitz.
The calculation of the individual coefficients is handled by
B_pure
.
References
- RC Reid, JM Prausniz, and BE Poling. The properties of gases & liquids 4th edition, 1986, p. 80.
PARAMETER | DESCRIPTION |
---|---|
T
|
Temperature. Unit = K.
TYPE:
|
Tc
|
Critical temperatures of all components. Unit = K.
TYPE:
|
Pc
|
Critical pressures of all components. Unit = Pa.
TYPE:
|
Zc
|
Critical compressibility factors of all components.
TYPE:
|
w
|
Acentric factors of all components.
TYPE:
|
RETURNS | DESCRIPTION |
---|---|
FloatSquareMatrix
|
Matrix of interaction virial coefficients \(B_{ij}\). Unit = m³/mol. |
Source code in src/polykin/thermo/eos/virial.py
278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 |
|
Examples¤
Estimate the molar volume of a 50 mol% ethylene/nitrogen at 350 K and 10 bar.
from polykin.thermo.eos import Virial
import numpy as np
Tc = [282.4, 126.2] # K
Pc = [50.4e5, 33.9e5] # Pa
Zc = [0.280, 0.290]
w = [0.089, 0.039]
eos = Virial(Tc, Pc, Zc, w)
v = eos.v(T=350., P=10e5, y=np.array([0.5, 0.5]))
print(f"{v:.2e} m³/mol")