polykin.thermo.eos¤
RedlichKwong ¤
Redlich-Kwong equation of state.
This EOS is based on the following \(P(v,T)\) relationship:
where \(P\) is the pressure, \(T\) is the temperature, \(v\) is the molar volume, \(a_m(T,z)\) and \(b_m(z)\) are the mixture EOS parameters, and \(z\) is the vector of mole fractions.
For a single component, the parameters \(a\) and \(b\) are given by:
where \(T_c\) is the critical temperature, \(P_c\) is the critical pressure, and \(T_r = T/T_c\) is the reduced temperature.
References
- RC Reid, JM Prausniz, and BE Poling. The properties of gases & liquids 4th edition, 1986, p. 37, 40, 80, 82.
| PARAMETER | DESCRIPTION |
|---|---|
Tc
|
Critical temperatures of all components. Unit = K.
TYPE:
|
Pc
|
Critical pressures of all components. Unit = Pa.
TYPE:
|
k
|
Binary interaction parameter matrix.
TYPE:
|
name
|
Name.
TYPE:
|
Source code in src/polykin/thermo/eos/cubic.py
361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 | |
Bm ¤
Bm(T: float, z: FloatVector) -> float
Calculate the second virial coefficient of the mixture.
References
- RC Reid, JM Prausniz, and BE Poling. The properties of gases & liquids 4th edition, 1986, p. 82.
| PARAMETER | DESCRIPTION |
|---|---|
T
|
Temperature. Unit = K.
TYPE:
|
z
|
Mole fractions of all components. Unit = mol/mol.
TYPE:
|
| RETURNS | DESCRIPTION |
|---|---|
float
|
Mixture second virial coefficient, \(B_m\). Unit = m³/mol. |
Source code in src/polykin/thermo/eos/cubic.py
149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 | |
DA ¤
DA(T, V, n, v0)
Calculate the departure of Helmholtz energy.
| PARAMETER | DESCRIPTION |
|---|---|
T
|
Temperature. Unit = K.
TYPE:
|
V
|
Volume. Unit = m³.
TYPE:
|
n
|
Mole amounts of all components. Unit = mol.
TYPE:
|
v0
|
Molar volume in reference state. Unit = m³/mol.
TYPE:
|
| RETURNS | DESCRIPTION |
|---|---|
float
|
Helmholtz energy departure, \(A - A^{\circ}\). Unit = J. |
Source code in src/polykin/thermo/eos/cubic.py
348 349 350 351 352 353 354 355 356 357 358 | |
K ¤
K(
T: float, P: float, x: FloatVector, y: FloatVector
) -> FloatVector
Calculate the K-values of all components.
| PARAMETER | DESCRIPTION |
|---|---|
T
|
Temperature. Unit = K.
TYPE:
|
P
|
Pressure. Unit = Pa.
TYPE:
|
x
|
Liquid mole fractions of all components. Unit = mol/mol.
TYPE:
|
y
|
Vapor mole fractions of all components. Unit = mol/mol.
TYPE:
|
| RETURNS | DESCRIPTION |
|---|---|
FloatVector
|
K-values of all components. |
Source code in src/polykin/thermo/eos/base.py
264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 | |
P ¤
P(T: float, v: float, z: FloatVector) -> float
Calculate the pressure of the fluid.
| PARAMETER | DESCRIPTION |
|---|---|
T
|
Temperature. Unit = K.
TYPE:
|
v
|
Molar volume. Unit = m³/mol.
TYPE:
|
z
|
Mole fractions of all components. Unit = mol/mol.
TYPE:
|
| RETURNS | DESCRIPTION |
|---|---|
float
|
Pressure. Unit = Pa. |
Source code in src/polykin/thermo/eos/cubic.py
176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 | |
Psat ¤
Psat(T: float, Psat0: float | None = None) -> float
Calculate the saturation pressure of the fluid.
Note
The saturation pressure is only defined for single-component systems. For multicomponent systems, a specific flash solver must be used: polykin.thermo.flash.
| PARAMETER | DESCRIPTION |
|---|---|
T
|
Temperature. Unit = K.
TYPE:
|
Psat0
|
Initial guess for the saturation pressure. By default, the value is estimated using the Wilson equation. Unit = Pa.
TYPE:
|
| RETURNS | DESCRIPTION |
|---|---|
float
|
Saturation pressure. Unit = Pa. |
Source code in src/polykin/thermo/eos/cubic.py
301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 | |
Z ¤
Z(T: float, P: float, z: FloatVector) -> FloatVector
Calculate the compressibility factors for the possible phases of a fluid.
The calculation is handled by Z_cubic_roots.
| PARAMETER | DESCRIPTION |
|---|---|
T
|
Temperature. Unit = K.
TYPE:
|
P
|
Pressure. Unit = Pa.
TYPE:
|
z
|
Mole fractions of all components. Unit = mol/mol.
TYPE:
|
| RETURNS | DESCRIPTION |
|---|---|
FloatVector
|
Compressibility factors of the possible phases. If two phases are possible, the first result is the lowest value (liquid). |
Source code in src/polykin/thermo/eos/cubic.py
203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 | |
a
cached
¤
a(T: float) -> FloatVector
Calculate the attractive parameters of the pure-components that make up the mixture.
| PARAMETER | DESCRIPTION |
|---|---|
T
|
Temperature. Unit = K.
TYPE:
|
| RETURNS | DESCRIPTION |
|---|---|
FloatVector
|
Attractive parameters of all components, \(a_i\). Unit = J·m³. |
Source code in src/polykin/thermo/eos/cubic.py
65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 | |
am ¤
am(T: float, z: FloatVector) -> float
Calculate the mixture attractive parameter from the corresponding pure-component parameters.
References
- RC Reid, JM Prausniz, and BE Poling. The properties of gases & liquids 4th edition, 1986, p. 82.
| PARAMETER | DESCRIPTION |
|---|---|
T
|
Temperature. Unit = K.
TYPE:
|
z
|
Mole fractions of all components. Unit = mol/mol.
TYPE:
|
| RETURNS | DESCRIPTION |
|---|---|
float
|
Mixture attractive parameter, \(a_m\). Unit = J·m³. |
Source code in src/polykin/thermo/eos/cubic.py
96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 | |
b
cached
property
¤
b: FloatVector
Calculate the repulsive parameters of the pure-components that make up the mixture.
| RETURNS | DESCRIPTION |
|---|---|
FloatVector
|
Repulsive parameters of all components, \(b_i\). Unit = m³/mol. |
bm ¤
bm(z: FloatVector) -> float
Calculate the mixture repulsive parameter from the corresponding pure-component parameters.
References
- RC Reid, JM Prausniz, and BE Poling. The properties of gases & liquids 4th edition, 1986, p. 82.
| PARAMETER | DESCRIPTION |
|---|---|
z
|
Mole fractions of all components. Unit = mol/mol.
TYPE:
|
| RETURNS | DESCRIPTION |
|---|---|
float
|
Mixture repulsive parameter, \(b_m\). Unit = m³/mol. |
Source code in src/polykin/thermo/eos/cubic.py
124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 | |
f ¤
f(
T: float,
P: float,
z: FloatVector,
phase: Literal["L", "V"],
) -> FloatVector
Calculate the fugacity of all components in a given phase.
For each component, the fugacity is given by:
where \(\hat{\phi}_i(T,P,y)\) is the fugacity coefficient, \(P\) is the pressure, and \(z_i\) is the mole fraction.
| PARAMETER | DESCRIPTION |
|---|---|
T
|
Temperature. Unit = K.
TYPE:
|
P
|
Pressure. Unit = Pa.
TYPE:
|
z
|
Mole fractions of all components. Unit = mol/mol.
TYPE:
|
phase
|
Phase of the fluid. Only relevant for systems where both liquid and vapor phases may exist.
TYPE:
|
| RETURNS | DESCRIPTION |
|---|---|
FloatVector
|
Fugacities of all components. Unit = Pa. |
Source code in src/polykin/thermo/eos/base.py
230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 | |
phi ¤
phi(
T: float,
P: float,
z: FloatVector,
phase: Literal["L", "V"],
) -> FloatVector
Calculate the fugacity coefficients of all components in a given phase.
For each component, the fugacity coefficient is given by:
References
- RC Reid, JM Prausniz, and BE Poling. The properties of gases & liquids 4th edition, 1986, p. 145.
| PARAMETER | DESCRIPTION |
|---|---|
T
|
Temperature. Unit = K.
TYPE:
|
P
|
Pressure. Unit = Pa.
TYPE:
|
z
|
Mole fractions of all components. Unit = mol/mol.
TYPE:
|
phase
|
Phase of the fluid. Only relevant for systems where both liquid and vapor phases may exist.
TYPE:
|
| RETURNS | DESCRIPTION |
|---|---|
FloatVector
|
Fugacity coefficients of all components. |
Source code in src/polykin/thermo/eos/cubic.py
232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 | |
v ¤
v(T: float, P: float, z: FloatVector) -> FloatVector
Calculate the molar volumes of the possible phases a fluid.
where \(v\) is the molar volume, \(Z(T, P, z)\) is the compressibility factor, \(T\) is the temperature, and \(P\) is the pressure, and \(z\) is the mole fraction vector.
| PARAMETER | DESCRIPTION |
|---|---|
T
|
Temperature. Unit = K.
TYPE:
|
P
|
Pressure. Unit = Pa.
TYPE:
|
z
|
Mole fractions of all components. Unit = mol/mol.
TYPE:
|
| RETURNS | DESCRIPTION |
|---|---|
FloatVector
|
Molar volumes of the possible phases. If two phases are possible, the first result is the lowest value (liquid). Unit = m³/mol. |
Source code in src/polykin/thermo/eos/base.py
200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 | |
Examples¤
Estimate the compressibility factor of a 50 mol% ethylene/nitrogen gas mixture at 300 K and 100 bar.
from polykin.thermo.eos import RedlichKwong
import numpy as np
Tc = [282.4, 126.2] # K
Pc = [50.4e5, 33.9e5] # Pa
eos = RedlichKwong(Tc, Pc)
Z = eos.Z(T=300., P=100e5, z=np.array([0.5, 0.5]))
print(f"{Z[0]:.2f}")