polykin.thermo.acm¤
NRTL_gamma ¤
NRTL_gamma(
x: FloatVector,
tau: FloatSquareMatrix,
alpha: FloatSquareMatrix,
) -> FloatVector
Calculate the activity coefficients of a multicomponent mixture according to the NRTL model.
where \(x_i\) are the mole fractions, \(\tau_{ij}\) are the interaction parameters, \(\alpha_{ij}\) are the non-randomness parameters, and \(G_{ij}=\exp(-\alpha_{ij} \tau_{ij})\).
References
- Renon, H. and Prausnitz, J.M. (1968), Local compositions in thermodynamic excess functions for liquid mixtures. AIChE J., 14: 135-144.
PARAMETER | DESCRIPTION |
---|---|
x
|
Mole fractions of all components. Unit = mol/mol.
TYPE:
|
tau
|
Interaction parameters, \(\tau_{ij}\). It is expected (but not checked) that \(\tau_{ii}=0\).
TYPE:
|
alpha
|
Non-randomness parameters, \(\alpha_{ij}\). It is expected (but not checked) that \(\alpha_{ij}=\alpha_{ji}\).
TYPE:
|
RETURNS | DESCRIPTION |
---|---|
FloatVector(N)
|
Activity coefficients of all components. |
See also
NRTL
: related class.
Source code in src/polykin/thermo/acm/nrtl.py
195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 |
|