Skip to content

polykin.reactors.rtd¤

F_tanks_series ¤

F_tanks_series(t: float, tavg: float, N: int) -> float

Cumulative residence time distribution for a series of equal CSTRs.

\[ F(t) = 1 - e^{-N t / \bar{t}} \; \sum_{i=0}^{N-1} \frac{(N t / \bar{t})^i}{i!} \]

References

  • Levenspiel, O. "Chemical reaction engineering", 3rd ed., John Wiley & Sons, 1999, p. 327.
PARAMETER DESCRIPTION
t

Residence time.

TYPE: float

tavg

Total average residence time, \(\bar{t}\).

TYPE: float

N

Number of tanks in series.

TYPE: int

RETURNS DESCRIPTION
float

Cumulative residence time distribution.

See also
  • E_tanks_series: related method to determine the differential distribution.
Source code in src/polykin/reactors/rtd.py
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
def F_tanks_series(t: float, tavg: float, N: int) -> float:
    r"""Cumulative residence time distribution for a series of equal CSTRs.

    $$ F(t) = 1 - e^{-N t / \bar{t}} \;
        \sum_{i=0}^{N-1} \frac{(N t / \bar{t})^i}{i!}  $$

    **References**

    * Levenspiel, O. "Chemical reaction engineering", 3rd ed., John Wiley &
      Sons, 1999, p. 327.

    Parameters
    ----------
    t : float
        Residence time.
    tavg : float
        Total average residence time, $\bar{t}$.
    N : int
        Number of tanks in series.

    Returns
    -------
    float
        Cumulative residence time distribution.

    See also
    --------
    * [`E_tanks_series`](E_tanks_series.md): related method to determine the
      differential distribution.
    """
    q = t/tavg
    if q == 0:
        return 0
    elif q == inf:
        return 1
    else:
        S = sum((N*q)**i / gamma(i+1) for i in range(1, N))
        return 1 - exp(-N*q) * (1 + S)