Skip to content

polykin.reactors.rtd¤

E_dispersion_model ¤

E_dispersion_model(
    t: float, tavg: float, Pe: float
) -> float

Differential residence time distribution for the dispersed plug flow model (also known as dispersion model).

Only approximate analytical solutions are available for this model. For small deviations from plug flow, i.e. when \(Pe > 10^2\), the distribution is approximated by:

\[ E(t) = \frac{1}{\bar{t}} \sqrt{\frac{Pe}{4\pi}} \exp\left[-\frac{Pe}{4}(1-\theta)^2\right] \]

Otherwise, when \(Pe \le 10^2\), the distribution is approximated by the so-called open-open solution:

\[ E(t) = \frac{1}{\bar{t}} \sqrt{\frac{Pe}{4\pi\theta}} \exp\left[-\frac{Pe}{4}\frac{(1-\theta)^2}{\theta}\right] \]

where \(\theta = t/\bar{t}\), and \(Pe = (v L)/D\).

References

  • Levenspiel, O. "Chemical reaction engineering", 3rd ed., John Wiley & Sons, 1999, p. 296-301.
PARAMETER DESCRIPTION
t

Residence time.

TYPE: float

tavg

Average residence time, \(\bar{t}\).

TYPE: float

Pe

Péclet number, \((v L)/D\).

TYPE: float

RETURNS DESCRIPTION
float

Differential residence time distribution.

See also
Source code in src/polykin/reactors/rtd.py
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
def E_dispersion_model(t: float, tavg: float, Pe: float) -> float:
    r"""Differential residence time distribution for the dispersed plug flow
    model (also known as dispersion model).

    Only approximate analytical solutions are available for this model. For
    small deviations from plug flow, i.e. when $Pe > 10^2$, the distribution is
    approximated by:

    $$ E(t) = \frac{1}{\bar{t}} \sqrt{\frac{Pe}{4\pi}}
              \exp\left[-\frac{Pe}{4}(1-\theta)^2\right]  $$

    Otherwise, when $Pe \le 10^2$, the distribution is approximated by the
    so-called open-open solution:

    $$ E(t) = \frac{1}{\bar{t}} \sqrt{\frac{Pe}{4\pi\theta}}
              \exp\left[-\frac{Pe}{4}\frac{(1-\theta)^2}{\theta}\right]  $$

    where $\theta = t/\bar{t}$, and $Pe = (v L)/D$. 

    **References**

    * Levenspiel, O. "Chemical reaction engineering", 3rd ed., John Wiley &
      Sons, 1999, p. 296-301.

    Parameters
    ----------
    t : float
        Residence time.
    tavg : float
        Average residence time, $\bar{t}$.
    Pe : float
        Péclet number, $(v L)/D$.

    Returns
    -------
    float
        Differential residence time distribution.

    See also
    --------
    * [`F_dispersion_model`](F_dispersion_model.md): related method to determine
      the cumulative distribution.
    """
    q = t/tavg
    if q == 0 or q == inf:
        return 0
    else:
        if Pe > 1e2:
            return sqrt(Pe/pi)/(2*tavg) * exp(-Pe/4*(1 - q)**2)
        else:
            return sqrt(Pe/(pi*q))/(2*tavg) * exp(-Pe/(4*q)*(1 - q)**2)