Skip to content

polykin.properties.viscosity¤

MUVPC_Jossi ¤

MUVPC_Jossi(
    rhor: float, M: float, Tc: float, Pc: float
) -> float

Calculate the effect of pressure (or density) on gas viscosity using the method of Jossi, Stiel and Thodos for nonpolar gases.

\[ \left[(\mu -\mu^\circ)\xi + 1\right]^{1/4} = 1.0230 + 0.23364\rho_r + 0.58533\rho_r^2 - 0.40758\rho_r^3 + 0.093324\rho_r^4 \]

where \(\mu\) is the dense gas viscosity, \(\mu^\circ\) is the is the low-pressure viscosity, \(\xi\) is a group of constants, and \(\rho_r = v_c / v\) is the reduced gas density. This equation is valid in the range \(0.1 < \rho_r < 3.0\).

References

  • RC Reid, JM Prausniz, and BE Poling. The properties of gases & liquids 4th edition, 1986, p. 424.
PARAMETER DESCRIPTION
rhor

Reduced gas density, \(\rho_r\).

TYPE: float

M

Molar mass. Unit = kg/mol.

TYPE: float

Tc

Critical temperature. Unit = K.

TYPE: float

Pc

Critical pressure. Unit = Pa.

TYPE: float

RETURNS DESCRIPTION
float

Residual viscosity, \((\mu - \mu^\circ)\). Unit = Pa·s.

Examples:

Estimate the residual viscosity of ethylene at 350 K and 100 bar.

>>> from polykin.properties.viscosity import MUVPC_Jossi
>>> vc = 130. # cm³/mol
>>> v  = 184. # cm³/mol, with Peng-Robinson
>>> rhor = vc/v
>>> mu_residual = MUVPC_Jossi(rhor=rhor, Tc=282.4, Pc=50.4e5, M=28.05e-3)
>>> print(f"{mu_residual:.2e} Pa·s")
6.76e-06 Pa·s
Source code in src/polykin/properties/viscosity/vapor.py
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
def MUVPC_Jossi(rhor: float,
                M: float,
                Tc: float,
                Pc: float
                ) -> float:
    r"""Calculate the effect of pressure (or density) on gas viscosity using
    the method of Jossi, Stiel and Thodos for nonpolar gases.

    $$ \left[(\mu -\mu^\circ)\xi + 1\right]^{1/4} = 1.0230 + 0.23364\rho_r
       + 0.58533\rho_r^2 - 0.40758\rho_r^3 + 0.093324\rho_r^4 $$

    where $\mu$ is the dense gas viscosity, $\mu^\circ$ is the is the
    low-pressure viscosity, $\xi$ is a group of constants, and
    $\rho_r = v_c / v$ is the reduced gas density. This equation is valid in
    the range $0.1 < \rho_r < 3.0$.

    **References**

    *   RC Reid, JM Prausniz, and BE Poling. The properties of gases & liquids
        4th edition, 1986, p. 424.

    Parameters
    ----------
    rhor : float
        Reduced gas density, $\rho_r$.
    M : float
        Molar mass. Unit = kg/mol.
    Tc : float
        Critical temperature. Unit = K.
    Pc : float
        Critical pressure. Unit = Pa.

    Returns
    -------
    float
        Residual viscosity, $(\mu - \mu^\circ)$. Unit = Pa·s.

    Examples
    --------
    Estimate the residual viscosity of ethylene at 350 K and 100 bar.
    >>> from polykin.properties.viscosity import MUVPC_Jossi
    >>> vc = 130. # cm³/mol
    >>> v  = 184. # cm³/mol, with Peng-Robinson
    >>> rhor = vc/v
    >>> mu_residual = MUVPC_Jossi(rhor=rhor, Tc=282.4, Pc=50.4e5, M=28.05e-3)
    >>> print(f"{mu_residual:.2e} Pa·s")
    6.76e-06 Pa·s
    """
    a = 1.0230 + 0.23364*rhor + 0.58533*rhor**2 - 0.40758*rhor**3 \
        + 0.093324*rhor**4
    # 1e7*(1/((1e3)**3 * (1/101325)**4))**(1/6)
    xi = 6.872969367e8*(Tc/(M**3 * Pc**4))**(1/6)
    return (a**4 - 1.)/xi