polykin.properties.viscosity¤
MUVPC_Jossi ¤
MUVPC_Jossi(
rhor: float, M: float, Tc: float, Pc: float
) -> float
Calculate the effect of pressure (or density) on gas viscosity using the method of Jossi, Stiel and Thodos for nonpolar gases.
where \(\mu\) is the dense gas viscosity, \(\mu^\circ\) is the is the low-pressure viscosity, \(\xi\) is a group of constants, and \(\rho_r = v_c / v\) is the reduced gas density. This equation is valid in the range \(0.1 < \rho_r < 3.0\).
References
- RC Reid, JM Prausniz, and BE Poling. The properties of gases & liquids 4th edition, 1986, p. 424.
PARAMETER | DESCRIPTION |
---|---|
rhor
|
Reduced gas density, \(\rho_r\).
TYPE:
|
M
|
Molar mass. Unit = kg/mol.
TYPE:
|
Tc
|
Critical temperature. Unit = K.
TYPE:
|
Pc
|
Critical pressure. Unit = Pa.
TYPE:
|
RETURNS | DESCRIPTION |
---|---|
float
|
Residual viscosity, \((\mu - \mu^\circ)\). Unit = Pa·s. |
Examples:
Estimate the residual viscosity of ethylene at 350 K and 100 bar.
>>> from polykin.properties.viscosity import MUVPC_Jossi
>>> vc = 130. # cm³/mol
>>> v = 184. # cm³/mol, with Peng-Robinson
>>> rhor = vc/v
>>> mu_residual = MUVPC_Jossi(rhor=rhor, Tc=282.4, Pc=50.4e5, M=28.05e-3)
>>> print(f"{mu_residual:.2e} Pa·s")
6.76e-06 Pa·s
Source code in src/polykin/properties/viscosity/vapor.py
81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 |
|