polykin.properties.viscosity¤
MUVMX_Lucas ¤
MUVMX_Lucas(
T: float,
P: float,
y: FloatVectorLike,
M: FloatVectorLike,
Tc: FloatVectorLike,
Pc: FloatVectorLike,
Zc: FloatVectorLike,
dm: FloatVectorLike,
) -> float
Calculate the viscosity of a gas mixture at a given temperature and pressure using the method of Lucas.
References
- RC Reid, JM Prausniz, and BE Poling. The properties of gases & liquids 4th edition, 1986, p. 431.
PARAMETER | DESCRIPTION |
---|---|
T
|
Temperature. Unit = K.
TYPE:
|
P
|
Pressure. Unit = Pa.
TYPE:
|
y
|
Mole fractions of all components. Unit = mol/mol.
TYPE:
|
M
|
Molar masses of all components. Unit = kg/mol.
TYPE:
|
Tc
|
Critical temperatures of all components. Unit = K.
TYPE:
|
Pc
|
Critical pressures of all components. Unit = Pa.
TYPE:
|
Zc
|
Critical compressibility factors of all components.
TYPE:
|
dm
|
Dipole moments of all components. Unit = debye.
TYPE:
|
RETURNS | DESCRIPTION |
---|---|
float
|
Gas mixture viscosity, \(\mu_m\). Unit = Pa·s. |
Examples:
Estimate the viscosity of a 60 mol% ethylene/nitrogen gas mixture at 350 K and 10 bar.
>>> from polykin.properties.viscosity import MUVMX_Lucas
>>> y = [0.6, 0.4]
>>> M = [28.e-3, 28.e-3] # kg/mol
>>> Tc = [282.4, 126.2] # K
>>> Pc = [50.4e5, 33.9e5] # Pa
>>> Zc = [0.280, 0.290]
>>> dm = [0., 0.]
>>> mu_mix = MUVMX_Lucas(T=350., P=10e5, y=y, M=M,
... Tc=Tc, Pc=Pc, Zc=Zc, dm=dm)
>>> print(f"{mu_mix:.2e} Pa·s")
1.45e-05 Pa·s
Source code in src/polykin/properties/viscosity/vapor.py
270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 |
|