polykin.properties.viscosity¤
MUVMX2_Herning_Zipperer ¤
MUVMX2_Herning_Zipperer(
y: FloatVectorLike,
mu: FloatVectorLike,
M: FloatVectorLike,
) -> float
Calculate the viscosity of a gas mixture from the viscosities of the pure components using the mixing rule of Wilke with the approximation of Herning and Zipperer.
Note
In this equation, the units of mole fraction \(y_i\) and molar mass \(M_i\) are arbitrary, as they cancel out when considering the ratio of the numerator to the denominator.
References
- RC Reid, JM Prausniz, and BE Poling. The properties of gases & liquids 4th edition, 1986, p. 410.
PARAMETER | DESCRIPTION |
---|---|
y
|
Mole fractions of all components. Unit = Any.
TYPE:
|
mu
|
Viscosities of all components, \(\mu\). Unit = Any.
TYPE:
|
M
|
Molar masses of all components. Unit = Any.
TYPE:
|
RETURNS | DESCRIPTION |
---|---|
float
|
Mixture viscosity, \(\mu_m\). Unit = [mu]. |
Examples:
Estimate the viscosity of a 50 mol% ethylene/1-butene gas mixture at 120°C and 1 bar.
>>> from polykin.properties.viscosity import MUVMX2_Herning_Zipperer
>>> y = [0.5, 0.5]
>>> mu = [130e-7, 100e-7] # Pa.s, from literature
>>> M = [28.e-3, 56.e-3] # kg/mol
>>> mu_mix = MUVMX2_Herning_Zipperer(y, mu, M)
>>> print(f"{mu_mix:.2e} Pa·s")
1.12e-05 Pa·s
Source code in src/polykin/properties/viscosity/vapor.py
22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 |
|