Skip to content

polykin.properties.vaporization_enthalpy¤

DHVL_Vetere ¤

DHVL_Vetere(Tb: float, Tc: float, Pc: float) -> float

Calculate the enthalpy of vaporization of a pure compound at the normal boiling point, \(\Delta H_{vb}\), using the Vetere method.

\[ \Delta H_{vb} = R T_c T_{br} \frac{0.4343\ln(P_c/10^5)-0.69431 + 0.89584 T_{br}}{0.37691-0.37306 T_{br} + 0.15075 (P_c/10^5)^{-1} T_{br}^{-2}} \]

where \(P_c\) is the critical pressure, \(T_c\) is the critical temperature, \(T_b\) is the normal boiling temperature, and \(T_{br}=T_b/T_c\) is the reduced normal boiling temperature.

References

  • RC Reid, JM Prausniz, and BE Poling. The properties of gases & liquids 4th edition, 1986, p. 227.
PARAMETER DESCRIPTION
Tb

Normal boiling point temperature. Unit = K.

TYPE: float

Tc

Critical temperature. Unit = K.

TYPE: float

Pc

Critical pressure. Unit = Pa.

TYPE: float

RETURNS DESCRIPTION
float

Vaporization enthalpy at the normal boiling point. Unit = J/mol.

See also

Examples:

Estimate the vaporization enthalpy of vinyl chloride at the normal boiling temperature.

>>> from polykin.properties.vaporization_enthalpy import DHVL_Vetere
>>> DHVL = DHVL_Vetere(Tb=259.8, Tc=425., Pc=51.5e5)
>>> print(f"{DHVL/1e3:.1f} kJ/mol")
21.6 kJ/mol
Source code in src/polykin/properties/vaporization_enthalpy.py
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
def DHVL_Vetere(Tb: float,
                Tc: float,
                Pc: float,
                ) -> float:
    r"""Calculate the enthalpy of vaporization of a pure compound at the normal
    boiling point, $\Delta H_{vb}$, using the Vetere method.

    $$
    \Delta H_{vb} = R T_c T_{br} \frac{0.4343\ln(P_c/10^5)-0.69431
    + 0.89584 T_{br}}{0.37691-0.37306 T_{br}
    + 0.15075 (P_c/10^5)^{-1} T_{br}^{-2}}
    $$

    where $P_c$ is the critical pressure, $T_c$ is the critical temperature,
    $T_b$ is the normal boiling temperature, and $T_{br}=T_b/T_c$ is the
    reduced normal boiling temperature.

    **References**

    *   RC Reid, JM Prausniz, and BE Poling. The properties of gases & liquids
        4th edition, 1986, p. 227.

    Parameters
    ----------
    Tb : float
        Normal boiling point temperature. Unit = K.
    Tc : float
        Critical temperature. Unit = K.
    Pc : float
        Critical pressure. Unit = Pa.

    Returns
    -------
    float
        Vaporization enthalpy at the normal boiling point. Unit = J/mol.

    See also
    --------
    * [`DHVL_Kistiakowsky_Vetere`](DHVL_Kistiakowsky_Vetere.md): alternative method.
    * [`DHVL_Pitzer`](DHVL_Pitzer.md): alternative method.

    Examples
    --------
    Estimate the vaporization enthalpy of vinyl chloride at the normal boiling
    temperature.
    >>> from polykin.properties.vaporization_enthalpy import DHVL_Vetere
    >>> DHVL = DHVL_Vetere(Tb=259.8, Tc=425., Pc=51.5e5)
    >>> print(f"{DHVL/1e3:.1f} kJ/mol")
    21.6 kJ/mol
    """
    Tbr = Tb/Tc
    return R*Tc*Tbr*(0.4343*log(Pc/1e5) - 0.69431 + 0.89584*Tbr) \
        / (0.37691 - 0.37306*Tbr + 0.15075/(Pc/1e5)/Tbr**2)