Skip to content

polykin.properties.vaporization¤

PL_Wilson ¤

PL_Wilson(
    T: float, Tc: float, Pc: float, w: float
) -> float

Estimate the vapor pressure of a pure compound using the Wilson approximation.

\[ \ln \frac{P_{vap}}{P_c} = 5.373(1 + \omega)(1 - 1/T_r) \]

where \(P_{vap}\) is the vapor pressure, \(P_c\) is the critical pressure, \(\omega\) is the acentric factor, and \(T_r\) is the reduced temperature.

References

  • RC Reid, JM Prausniz, and BE Poling. The properties of gases & liquids 4th edition, 1986, p. 207.
PARAMETER DESCRIPTION
T

Temperature [K].

TYPE: float

Tc

Critical temperature [K].

TYPE: float

Pc

Critical pressure [Pa].

TYPE: float

w

Acentric factor.

TYPE: float

RETURNS DESCRIPTION
float

Vapor pressure [Pa].

Examples:

Estimate the vapor pressure of butadiene at 268.7 K.

>>> from polykin.properties.vaporization import PL_Wilson
>>> pvap = PL_Wilson(268.7, Tc=425.0, Pc=43.3e5, w=0.195)
>>> print(f"{pvap:.1e} Pa")
1.0e+05 Pa
Source code in src/polykin/properties/vaporization/pvap.py
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
def PL_Wilson(
    T: float,
    Tc: float,
    Pc: float,
    w: float
) -> float:
    r"""Estimate the vapor pressure of a pure compound using the Wilson 
    approximation.

    $$ \ln \frac{P_{vap}}{P_c} = 5.373(1 + \omega)(1 - 1/T_r) $$

    where $P_{vap}$ is the vapor pressure, $P_c$ is the critical pressure,
    $\omega$ is the acentric factor, and $T_r$ is the reduced temperature.

    **References**

    *   RC Reid, JM Prausniz, and BE Poling. The properties of gases & liquids
        4th edition, 1986, p. 207.

    Parameters
    ----------
    T : float
        Temperature [K].
    Tc : float
        Critical temperature [K].
    Pc : float
        Critical pressure [Pa].
    w : float
        Acentric factor.

    Returns
    -------
    float
        Vapor pressure [Pa].

    Examples
    --------
    Estimate the vapor pressure of butadiene at 268.7 K.
    >>> from polykin.properties.vaporization import PL_Wilson
    >>> pvap = PL_Wilson(268.7, Tc=425.0, Pc=43.3e5, w=0.195)
    >>> print(f"{pvap:.1e} Pa")
    1.0e+05 Pa
    """
    return Pc*exp(5.373*(1 + w)*(1 - Tc/T))