polykin.properties.thermal_conductivity¤
KVPC_Stiel_Thodos ¤
KVPC_Stiel_Thodos(
v: float, M: float, Tc: float, Pc: float, Zc: float
) -> float
Calculate the effect of pressure (or density) on the thermal conductivity of pure gases using the method of Stiel and Thodos for nonpolar components.
where \(k\) is the dense gas thermal conductivity, \(k^\circ\) is the low-pressure thermal conductivtiy, \(\Gamma\) is a group of constants, \(Z_c\) is the critical compressibility factor, and \(\rho_r = v_c / v\) is the reduced gas density. This equation is valid in the range \(0 \leq \rho_r < 2.8\).
References
- RC Reid, JM Prausniz, and BE Poling. The properties of gases & liquids 4th edition, 1986, p. 521.
PARAMETER | DESCRIPTION |
---|---|
v
|
Gas molar volume. Unit = m³/mol.
TYPE:
|
M
|
Molar mass. Unit = kg/mol.
TYPE:
|
Tc
|
Critical temperature. Unit = K.
TYPE:
|
Pc
|
Critical pressure. Unit = Pa.
TYPE:
|
Zc
|
Critical compressibility factor.
TYPE:
|
RETURNS | DESCRIPTION |
---|---|
float
|
Residual thermal conductivity, \((k - k^{\circ})\). Unit = W/(m·K). |
Examples:
Estimate the residual thermal conductivity of ethylene at 350 K and 100 bar.
>>> from polykin.properties.thermal_conductivity import KVPC_Stiel_Thodos
>>> v = 1.84e-4 # m³/mol, with Peng-Robinson
>>> k_residual = KVPC_Stiel_Thodos(v=v, M=28.05e-3,
... Tc=282.4, Pc=50.4e5, Zc=0.280)
>>> print(f"{k_residual:.2e} W/(m·K)")
1.69e-02 W/(m·K)
Source code in src/polykin/properties/thermal_conductivity/vapor.py
18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 |
|