polykin.properties.thermal_conductivity¤
KVMXPC_Stiel_Thodos ¤
KVMXPC_Stiel_Thodos(
v: float,
y: FloatVectorLike,
M: FloatVectorLike,
Tc: FloatVectorLike,
Pc: FloatVectorLike,
Zc: FloatVectorLike,
w: FloatVectorLike,
) -> float
Calculate the effect of pressure (or density) on the thermal conductivity of gas mixtures using the method of Stiel and Thodos for nonpolar components, combined with the mixing rules of Yorizane.
References
- RC Reid, JM Prausniz, and BE Poling. The properties of gases & liquids 4th edition, 1986, p. 536.
PARAMETER | DESCRIPTION |
---|---|
v
|
Gas molar volume. Unit = m³/mol.
TYPE:
|
y
|
Mole fractions of all components. Unit = mol/mol.
TYPE:
|
M
|
Molar masses of all components. Unit = kg/mol.
TYPE:
|
Tc
|
Critical temperatures of all components. Unit = K.
TYPE:
|
Pc
|
Critical pressures of all components. Unit = Pa.
TYPE:
|
Zc
|
Critical compressibility factors of all components.
TYPE:
|
w
|
Acentric factors of all components.
TYPE:
|
RETURNS | DESCRIPTION |
---|---|
float
|
Residual thermal conductivity, \((k_m - k_m^{\circ})\). Unit = W/(m·K). |
Examples:
Estimate the residual thermal conductivity of a 50 mol% ethylene/propylene mixture at 350 K and 100 bar.
>>> from polykin.properties.thermal_conductivity import KVMXPC_Stiel_Thodos
>>> import numpy as np
>>> v = 1.12e-4 # m³/mol, with Peng-Robinson
>>> y = [0.5, 0.5]
>>> M = [28.05e-3, 42.08e-3] # kg/mol
>>> Pc = [50.4e5, 46.0e5] # Pa
>>> Tc = [282.4, 364.9] # K
>>> Zc = [0.280, 0.274]
>>> w = [0.089, 0.144]
>>> k_residual = KVMXPC_Stiel_Thodos(v, y, M, Tc, Pc, Zc, w)
>>> print(f"{k_residual:.2e} W/(m·K)")
3.82e-02 W/(m·K)
Source code in src/polykin/properties/thermal_conductivity/vapor.py
87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 |
|