Skip to content

polykin.properties.thermal_conductivity¤

KVMXPC_Stiel_Thodos ¤

KVMXPC_Stiel_Thodos(
    v: float,
    y: FloatVectorLike,
    M: FloatVectorLike,
    Tc: FloatVectorLike,
    Pc: FloatVectorLike,
    Zc: FloatVectorLike,
    w: FloatVectorLike,
) -> float

Calculate the effect of pressure (or density) on the thermal conductivity of gas mixtures using the method of Stiel and Thodos for nonpolar components, combined with the mixing rules of Yorizane.

References

  • RC Reid, JM Prausniz, and BE Poling. The properties of gases & liquids 4th edition, 1986, p. 536.
PARAMETER DESCRIPTION
v

Gas molar volume. Unit = m³/mol.

TYPE: float

y

Mole fractions of all components. Unit = mol/mol.

TYPE: FloatVectorLike

M

Molar masses of all components. Unit = kg/mol.

TYPE: FloatVectorLike

Tc

Critical temperatures of all components. Unit = K.

TYPE: FloatVectorLike

Pc

Critical pressures of all components. Unit = Pa.

TYPE: FloatVectorLike

Zc

Critical compressibility factors of all components.

TYPE: FloatVectorLike

w

Acentric factors of all components.

TYPE: FloatVectorLike

RETURNS DESCRIPTION
float

Residual thermal conductivity, \((k_m - k_m^{\circ})\). Unit = W/(m·K).

Examples:

Estimate the residual thermal conductivity of a 50 mol% ethylene/propylene mixture at 350 K and 100 bar.

>>> from polykin.properties.thermal_conductivity import KVMXPC_Stiel_Thodos
>>> import numpy as np
>>> v = 1.12e-4  # m³/mol, with Peng-Robinson
>>> y = [0.5, 0.5]
>>> M = [28.05e-3, 42.08e-3]  # kg/mol
>>> Pc = [50.4e5, 46.0e5]     # Pa
>>> Tc = [282.4, 364.9]       # K
>>> Zc = [0.280, 0.274]
>>> w = [0.089, 0.144]
>>> k_residual = KVMXPC_Stiel_Thodos(v, y, M, Tc, Pc, Zc, w)
>>> print(f"{k_residual:.2e} W/(m·K)")
3.82e-02 W/(m·K)
Source code in src/polykin/properties/thermal_conductivity/vapor.py
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
def KVMXPC_Stiel_Thodos(v: float,
                        y: FloatVectorLike,
                        M: FloatVectorLike,
                        Tc: FloatVectorLike,
                        Pc: FloatVectorLike,
                        Zc: FloatVectorLike,
                        w: FloatVectorLike
                        ) -> float:
    r"""Calculate the effect of pressure (or density) on the thermal
    conductivity of gas mixtures using the method of Stiel and Thodos for
    nonpolar components, combined with the mixing rules of Yorizane.

    **References**

    *   RC Reid, JM Prausniz, and BE Poling. The properties of gases & liquids
        4th edition, 1986, p. 536.

    Parameters
    ----------
    v : float
        Gas molar volume. Unit = m³/mol.
    y : FloatVectorLike
        Mole fractions of all components. Unit = mol/mol.
    M : FloatVectorLike
        Molar masses of all components. Unit = kg/mol.
    Tc : FloatVectorLike
        Critical temperatures of all components. Unit = K.
    Pc : FloatVectorLike
        Critical pressures of all components. Unit = Pa.
    Zc : FloatVectorLike
        Critical compressibility factors of all components.
    w : FloatVectorLike
        Acentric factors of all components.

    Returns
    -------
    float
        Residual thermal conductivity, $(k_m - k_m^{\circ})$. Unit = W/(m·K).

    Examples
    --------
    Estimate the residual thermal conductivity of a 50 mol% ethylene/propylene
    mixture at 350 K and 100 bar.
    >>> from polykin.properties.thermal_conductivity import KVMXPC_Stiel_Thodos
    >>> import numpy as np
    >>> v = 1.12e-4  # m³/mol, with Peng-Robinson
    >>> y = [0.5, 0.5]
    >>> M = [28.05e-3, 42.08e-3]  # kg/mol
    >>> Pc = [50.4e5, 46.0e5]     # Pa
    >>> Tc = [282.4, 364.9]       # K
    >>> Zc = [0.280, 0.274]
    >>> w = [0.089, 0.144]
    >>> k_residual = KVMXPC_Stiel_Thodos(v, y, M, Tc, Pc, Zc, w)
    >>> print(f"{k_residual:.2e} W/(m·K)")
    3.82e-02 W/(m·K)
    """

    y = np.asarray(y)
    M = np.asarray(M)
    Tc = np.asarray(Tc)
    Pc = np.asarray(Pc)
    Zc = np.asarray(Zc)
    w = np.asarray(w)

    vc = Zc*R*Tc/Pc

    # The loop could be simplified because
    # sum_i sum_j y_i y_j V_{ij} = sum_i y_i^2 V_{ii} + 2 sum_i sum_{j>i} y_i y_j V_ij
    vc_mix = 0.
    Tc_mix = 0.
    N = len(y)
    for i in range(N):
        for j in range(N):
            if i == j:
                vc_ = vc[i]
                Tc_ = Tc[i]
            else:
                vc_ = (1/8)*(vc[i]**(1/3) + vc[j]**(1/3))**3
                Tc_ = sqrt(Tc[i]*Tc[j])
            vc_term = y[i]*y[j]*vc_
            vc_mix += vc_term
            Tc_mix += vc_term*Tc_
    Tc_mix /= vc_mix

    w_mix = dot(y, w)
    Zc_mix = 0.291 - 0.08*w_mix
    Pc_mix = Zc_mix*R*Tc_mix/vc_mix
    M_mix = dot(y, M)

    return KVPC_Stiel_Thodos(v, M_mix, Tc_mix, Pc_mix, Zc_mix)