Skip to content

polykin.properties.thermal_conductivity¤

KVMX2_Wassilijewa ¤

KVMX2_Wassilijewa(
    y: FloatVectorLike,
    k: FloatVectorLike,
    M: FloatVectorLike,
) -> float

Calculate the thermal conductivity of a gas mixture from the thermal conductivities of the pure components using the mixing rule of Wassilijewa, with the simplification of Herning and Zipperer.

\[ k_m = \frac{\displaystyle \sum_{i=1}^N y_i M_i^{1/2} k_i} {\displaystyle \sum_{i=1}^N y_i M_i^{1/2}} \]

Note

In this equation, the units of mole fraction \(y_i\) and molar mass \(M_i\) are arbitrary, as they cancel out when considering the ratio of the numerator to the denominator.

References

  • RC Reid, JM Prausniz, and BE Poling. The properties of gases & liquids 4th edition, 1986, pp. 410, 531.
PARAMETER DESCRIPTION
y

Mole fractions of all components. Unit = Any.

TYPE: FloatVectorLike

k

Thermal conductivities of all components. Unit = Any.

TYPE: FloatVectorLike

M

Molar masses of all components. Unit = Any.

TYPE: FloatVectorLike

RETURNS DESCRIPTION
float

Mixture thermal conductivity, \(k_m\). Unit = [k].

Examples:

Estimate the thermal conductivity of a 50 mol% styrene/ethyl-benzene gas mixture at 25°C and 0.1 bar.

>>> from polykin.properties.thermal_conductivity import KVMX2_Wassilijewa
>>> y = [0.5, 0.5]
>>> k = [1.00e-2, 1.55e-2] # W/(m·K), from literature
>>> M = [104.15, 106.17]   # g/mol
>>> k_mix = KVMX2_Wassilijewa(y, k, M)
>>> print(f"{k_mix:.2e} W/(m·K)")
1.28e-02 W/(m·K)
Source code in src/polykin/properties/thermal_conductivity/vapor.py
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
def KVMX2_Wassilijewa(y: FloatVectorLike,
                      k: FloatVectorLike,
                      M: FloatVectorLike
                      ) -> float:
    r"""Calculate the thermal conductivity of a gas mixture from the thermal
    conductivities of the pure components using the mixing rule of Wassilijewa,
    with the simplification of Herning and Zipperer.

    $$ k_m = \frac{\displaystyle \sum_{i=1}^N y_i M_i^{1/2} k_i}
                  {\displaystyle \sum_{i=1}^N y_i M_i^{1/2}} $$

    !!! note

        In this equation, the units of mole fraction $y_i$ and molar mass
        $M_i$ are arbitrary, as they cancel out when considering the ratio of
        the numerator to the denominator.

    **References**

    *   RC Reid, JM Prausniz, and BE Poling. The properties of gases & liquids
        4th edition, 1986, pp. 410, 531.

    Parameters
    ----------
    y : FloatVectorLike
        Mole fractions of all components. Unit = Any.
    k : FloatVectorLike
        Thermal conductivities of all components. Unit = Any.
    M : FloatVectorLike
        Molar masses of all components. Unit = Any.

    Returns
    -------
    float
        Mixture thermal conductivity, $k_m$. Unit = [k].

    Examples
    --------
    Estimate the thermal conductivity of a 50 mol% styrene/ethyl-benzene gas
    mixture at 25°C and 0.1 bar.
    >>> from polykin.properties.thermal_conductivity import KVMX2_Wassilijewa
    >>> y = [0.5, 0.5]
    >>> k = [1.00e-2, 1.55e-2] # W/(m·K), from literature
    >>> M = [104.15, 106.17]   # g/mol
    >>> k_mix = KVMX2_Wassilijewa(y, k, M)
    >>> print(f"{k_mix:.2e} W/(m·K)")
    1.28e-02 W/(m·K)
    """
    y = np.asarray(y)
    k = np.asarray(k)
    M = np.asarray(M)

    a = y*sqrt(M)
    a /= a.sum()

    return dot(a, k)