polykin.properties.thermal_conductivity¤
KVMX2_Wassilijewa ¤
KVMX2_Wassilijewa(
y: FloatVectorLike,
k: FloatVectorLike,
M: FloatVectorLike,
) -> float
Calculate the thermal conductivity of a gas mixture from the thermal conductivities of the pure components using the mixing rule of Wassilijewa, with the simplification of Herning and Zipperer.
Note
In this equation, the units of mole fraction \(y_i\) and molar mass \(M_i\) are arbitrary, as they cancel out when considering the ratio of the numerator to the denominator.
References
- RC Reid, JM Prausniz, and BE Poling. The properties of gases & liquids 4th edition, 1986, pp. 410, 531.
PARAMETER | DESCRIPTION |
---|---|
y
|
Mole fractions of all components. Unit = Any.
TYPE:
|
k
|
Thermal conductivities of all components. Unit = Any.
TYPE:
|
M
|
Molar masses of all components. Unit = Any.
TYPE:
|
RETURNS | DESCRIPTION |
---|---|
float
|
Mixture thermal conductivity, \(k_m\). Unit = [k]. |
Examples:
Estimate the thermal conductivity of a 50 mol% styrene/ethyl-benzene gas mixture at 25°C and 0.1 bar.
>>> from polykin.properties.thermal_conductivity import KVMX2_Wassilijewa
>>> y = [0.5, 0.5]
>>> k = [1.00e-2, 1.55e-2] # W/(m·K), from literature
>>> M = [104.15, 106.17] # g/mol
>>> k_mix = KVMX2_Wassilijewa(y, k, M)
>>> print(f"{k_mix:.2e} W/(m·K)")
1.28e-02 W/(m·K)
Source code in src/polykin/properties/thermal_conductivity/vapor.py
181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 |
|